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Abstract—As the application of knowledge graphs becomes
increasingly widespread, the issue of knowledge graph incom-
pleteness has garnered significant attention. As a classical type
of non-Euclidean spatial data, knowledge graphs possess various
complex structural types. However, most current knowledge
graph completion models are developed within a single space,
which makes it challenging to capture the inherent knowledge
information embedded in the entire knowledge graph. This
limitation hinders the representation learning capability of the
models. To address this issue, this paper focuses on how to
better extend the representation learning from a single space
to Riemannian manifolds, which are capable of representing
more complex structures. We propose a new knowledge graph
completion model called MRME-KGC, based on multi-view Rie-
mannian Manifolds fusion to achieve this. Specifically, MRME-
KGC simultaneously considers the fusion of four views: two
hyperbolic Riemannian spaces with negative curvature, a Eu-
clidean Riemannian space with zero curvature, and a spherical
Riemannian space with positive curvature to enhance knowledge
graph modeling. Additionally, this paper proposes a contrastive
learning method for Riemannian spaces to mitigate the noise
and representation issues arising from Multi-view Riemannian
Manifolds Fusion. This paper presents extensive experiments on
MRME-KGC across multiple datasets. The results consistently
demonstrate that MRME-KGC significantly outperforms current
state-of-the-art models, achieving highly competitive performance
even with low-dimensional embeddings.

Index Terms—Knowledge Graph, Knowledge Graph Com-
pletion, Contrastive Learning, Hyperbolic Space, Riemannian
Manifolds.

I. INTRODUCTION

THE emergence of knowledge graphs [1] [2] has sig-
nificantly advanced fields such as knowledge engineer-

ing and artificial intelligence. This includes applications in
recommendation systems [3] [4], knowledge-enhanced large
language models [5] [6] [7], biomedicine [8] [9] [10], temporal
data [11] and financial risk control [12] [13]. Unfortunately,
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Fig. 1. An example illustrating how KGs simultaneously encompass hierar-
chical structures, chain-transitive structures, and cyclic structures.

even the most renowned large-scale open knowledge graphs,
such as Wikidata [14] and ConceptNet [15], suffer from
significant incompleteness. This greatly limits the performance
of knowledge graphs in downstream applications.

A Knowledge Graph (KG) typically stores real-world
knowledge in the form of triples, representing the factual
semantic relationships between entities. In order to deal with
the issue of incompleteness, researchers propose the task of
Knowledge Graph Completion (KGC), which aims to infer
missing facts or predict incomplete facts (triples) based on
existing knowledge, thereby completing the KG. It can be
a prediction of the tail entity given the head entity and the
relation (h, r, ?), or a prediction of the head entity given the
relation and the tail entity (?, r, t).

Using knowledge graph embeddings to infer missing facts
is a forward-looking method, which aims to learn the embed-
dings of entities and relationships in a low-dimensional vector
space, i.e., capturing the patterns of connections between facts
(entities and relationships) by constructing scoring functions
within the corresponding space. In simple terms, finding the
most suitable embeddings and embedding space for knowledge
graphs is crucial and highly challenging. For example, KGC
models based on zero-curvature Euclidean space, such as
TransE [16] and Mixup-enhanced embeddings [21], provide
simple, yet effective solutions. Complex space-based methods
such as RotatE [17] model intricate relations through rotation,
while approaches using geometric operation combinations [18]
[20] or multi-functional embedding spaces [19] enable more
flexible relationship modeling. Non-Euclidean spaces also
offer significant advantages. Hyperbolic embeddings, such as
low-dimensional hyperbolic models [22] and relation-specific
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hyperbolic cones [23], capture hierarchies and long-range
dependencies effectively. Models like normalizing flows [24]
or mixed-curvature spaces [25] further improve flexibility and
expressiveness.

Firstly, as a typical non-Euclidean knowledge structure,
KGs require robust modeling capabilities to capture various
complex structures, which many previous studies [16] [17]
[22] have overlooked. As illustrated in Fig. 1, real-world
knowledge often exhibits different patterns and complex geo-
metric shapes (e.g., hierarchical structures, circular structures,
linear transitive structures, etc.). Euclidean space and hyper-
bolic space, as special forms of Riemannian manifolds with
constant curvature, are limited in simultaneously modeling
the aforementioned complex structures of various KGs. Using
single-curvature Riemannian manifolds to model KGs cannot
adequately capture the diverse patterns and complex geome-
tries shown in Fig. 1.

Secondly, hierarchical structures, being the most important
structure of knowledge graphs, are well supported by hy-
perbolic space for KG modeling. In hyperbolic space, the
embedding space expands exponentially with increasing em-
bedding dimensions [26], whereas in Euclidean space it grows
polynomially. This characteristic provides a solid foundation
for embedding hierarchical structures supported by hyperbolic
geometry. Consequently, due to the exponential growth of
volume in hyperbolic space, it can capture the complexity of
hierarchical data more efficiently, allowing it to embed more
information than Euclidean space at the same dimensionality
[74]. However, the current work in KGC [22] [27] mainly
studies the Poincaré Ball Model, but lacks of the consideration
of the Lorentz Model.

This paper argues that although the Poincare sphere model
can effectively capture the semantic information embedded
in the knowledge graph hierarchy, it also has limitations.
This insufficiency stems from the inherent limitations of the
Poincaré Ball Model, particularly in preserving hierarchical
relationships as embeddings move closer to the boundary of
the hyperbolic space, where the density of representations
increases rapidly, potentially leading to distortions in semantic
representation. This effect has been noted in prior works, such
as [74] and [51], which highlight that the boundary-induced
compression of points in hyperbolic space can hinder the
effective capture of hierarchical information. Moreover, the
exponential/logarithmic mappings in the Poincaré Ball Model
present numerical stability issues (which can lead to “NaN”
problems in practice) [28] [29]. Recent work in other fields
has attempted to address this problem. For example, [29]
uses the random feature mapping with the Laplace operator’s
eigenfunctions and [30] uses the Lorentz-type operators to
replace exponential/logarithmic mappings. However, the issue
of numerical stability remains largely unresolved. This paper
proposes that for the KGC task, rather than discarding the
Poincaré Ball Model, we should combine it with the Lorentz
Model to alleviate numerical instability, as the Poincaré Ball
Model is effective in modeling hierarchical relationships but
suffers from numerical instability and boundary effects, while
the Lorentz Model [76] avoids these issues and offers better
numerical stability, leveraging the strengths of both models to
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Fig. 2. Illustration of the marginal density explosion problem for the Poincare
sphere hyperbolic model and its comparison with Euclidean space distance
[26] .

better capture the rich semantic information and hierarchical
relationships within KGs. Subsequent experiments consistently
demonstrate the validity of this perspective.

Along this line, this paper proposes an expansion from a
single Euclidean space and hyperbolic space to a model called
MRME-KGC, which fuses views from Riemannian manifolds
with zero curvature, positive curvature, and negative curvature.
Specifically, MRME-KGC employs an attention mechanism
to fuse two negative curvature Riemannian manifold views
(Poincaré Ball Model and Lorentz Model) for more effectively
capturing the embeddings of hierarchical structures in the KG,
a zero curvature Riemannian manifold view (Euclidean space)
for more effectively capturing the embeddings of linear transi-
tive structures in the KG, and a positive curvature Riemannian
manifold view (Spherical space) for more effectively capturing
the embeddings of circular structures in the KG. However,
there is one more issue worth noting. As shown in Fig. 2(b),
in a hyperbolic space with constant negative curvature, the
nodes near the center of the graph are closer together, while
those near the boundary are farther apart. This can result in
situations as depicted in Fig. 2(a), where the distance between
two entities located at the edges of the hyperbolic space is
very large, despite them having a potential semantic similarity
in reality. To better address this issue and to reduce the noise
when fusing hyperbolic space with spherical space, we propose
a contrastive learning method for KGC in Riemannian man-
ifolds. Furthermore, this paper proposes employing Lorentz
linear transformations as the relation transformation function
for head entities in the Lorentz Model.

The specific contributions of this paper are as follows.

• This paper points out that existing models for KGC
tasks based on hyperbolic space only consider using
the Poincaré Ball Model to represent hyperbolic space,
neglecting the simultaneous use of both the Lorentz
Model and the Poincaré Ball Model, which severely limits
the model performance.

• To the best of our knowledge, this paper is the first
to explore the use of a two-view hyperbolic represen-
tation model for combining zero-curvature and positive-
curvature Riemannian manifolds for KGC tasks. Through
experiments, we found that models integrating multiple
views simultaneously can more accurately reflect hierar-
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chical structures and achieve better performance.
• This paper proposes a contrastive learning method for

KGC tasks under Riemannian manifolds, aiming to mit-
igate the potential noise generated during the fusion of
the Poincaré Ball Model view with the spherical view
and to reduce the distances between edge entities in the
Poincaré Ball Model.

• Through extensive experiments on six datasets, we found
that the MRME-KGC model not only achieves superior
performance on most metrics but also effectively cap-
tures complex structural semantic information in knowl-
edge graphs under low-dimensional conditions. Further-
more, compared to other models in standard dimen-
sions, MRME-KGC significantly improves metrics such
as Hits@1 and MRR, achieving optimal results.

The remainder of this paper is organized as follows. Section
II introduces some related work on KGC and approaches
based on Riemannian Manifolds. Section III presents the
preliminaries and a detailed explanation of the MRME-KGC
method. In Section IV, we conduct extensive experiments
and analyses from various perspectives to demonstrate the
effectiveness of our approach. Finally, Section V concludes
the paper and provides an outlook on future work.

II. RELATED WORK

Many advancements in KGC have greatly benefited from
the exploration of non-Euclidean geometric properties and
the precise modeling of more complex Riemannian Mani-
fold spaces. In this section, we first introduce KGC models
based on Euclidean space and complex space. Secondly, we
introduce the KGC models based on Riemannian Manifolds.
Finally, we discuss the applications of Riemannian Manifolds
in other fields.

A. KGC Models Based on Euclidean and Complex Spaces

1) KGC model based on translation representation: KGC
models based on Euclidean space are the most extensively re-
searched type to date. TransE [16] is a typical representative of
this category, which applies the concept of word embeddings
combined with vector addition and subtraction operations to
the embedding representation learning of knowledge graphs.
To address the limitations of TransE in handling more complex
types of relationships, subsequent models such as TransD [31],
TransR [32] and TorusE [33] propose various improvements.

In subsequent work, researchers apply mathematical op-
erations from Complex Space to the KGC task, including
models such as ComplEx [34], RotatE [17], QIQE [35] and
HAKE [36]. ComplEx is the first work to embed entities
and relationships into complex space, capturing symmetric
and antisymmetric relations through complex inner products.
RotatE conceptualizes relationships as rotations in complex
spaces and has become one of the most popular KGC models.
Researchers extend the exploration beyond the single real
and imaginary parts of complex space to hyper-complex
spaces (quaternion spaces [37]). QuatE [38] embeds entities
and relationships into quaternion space and captures complex
relationships through quaternion multiplication.

RelEns-DSC [62] is a relation-aware ensemble learning
approach for knowledge graph embedding that independently
optimizes the ensemble weights for different relations using
a divide-search-combine strategy, thus enhancing both effi-
ciency and performance. CompoundE [20] introduces a novel
knowledge graph embedding model that combines translation,
rotation, and scaling operations in capturing diverse relational
patterns. GreenKGC [18] is a lightweight and modular knowl-
edge graph completion method that integrates representation
learning, feature pruning, and decision learning, achieving
competitive performance in low-dimensional settings while
significantly reducing model size and improving applicability.

2) KGC Models Based on Neural Network: In the KGC
task, neural network models have received widespread atten-
tion due to their powerful representation ability and flexibility.
ConvE [40], ConvKB [41], CLGAT [39] and InteractE [42]
are typical representatives of using neural networks for KGC.
They capture the complex interactions between entities and
relations through different convolution or graph convolution
operations, each with its own characteristics. These models use
various convolution operations to improve the effectiveness
of knowledge graph completion. However, these methods of
learning KG embedding in a data-driven manner still have
difficulty capturing the heterogeneity of complex structures
and relations in knowledge graphs.

B. KGC Models Based on Riemannian Manifolds

Models based on Riemannian Manifolds embed knowledge
graphs into non-Euclidean spaces to effectively capture their
inherent complex geometric structures. This approach helps
to more accurately represent the associations between entities
and relationships in knowledge graphs, thereby enhancing
the model’s ability for graph modeling and reasoning. The
classic KGC models based on Riemannian Manifolds include
MuRP [43], AttH [22], ConE [23], MuRMP [25] and GIE
[27]. Among them, MuRP achieves effective modeling of
hierarchical structures in knowledge graphs by embedding
multiple types of relationships in hyperbolic space. AttH
utilizes attention mechanisms to selectively focus on important
relational features in hyperbolic space, enhancing the model’s
expressiveness and reasoning performance. ConE uses cone
hyperbolic space embedding to further improve the ability to
represent complex relations and hierarchical structures. These
methods perform well in processing knowledge graph data
with hierarchical structures and complex relations.

C. Related applications of Riemannian Manifolds

In recent years, Riemannian manifolds have seen significant
advancements in their various applications within deep learn-
ing, particularly excelling in handling complex, non-Euclidean
structured data. In the task of time series graphing, HTGN
[44] embeds temporal networks into hyperbolic space. For
recommendation systems, LKGR [45] proposes a knowledge-
aware recommendation method based on a hyperbolic geo-
metric Lorentz model. HGCF [46] introduces a hyperbolic
GCN model for collaborative filtering. In natural language
processing tasks, HyboNet [47] extends word embeddings
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Fig. 3. Framework of MRME-KGC. The embeddings in MRME-KGC incorporate views from four distinct spaces, integrating multiple view embeddings
through an attention mechanism. MRME-KGC employs the iterative entity representation updates and the contrastive learning to achieve representation learning.
The optimized entity and relation representations are then fed into the scoring function to perform relevant triple link prediction.

TABLE I
NOTATION SUMMARY

Notation Explanation
M Riemannian manifold
TxM Riemannian manifold tangent space
G KG Set
E Entity Set
R Relation Set
T Triple Set
f(·) Score Function
expk

x(α)
Exponential Map

logk
x(α)

Logarithmic Map
Ed
k Euclidean Space

Pd
k Poincaré Ball Model Space

Ld
k Lorentz Model Space

Sdk Sphere Space
τ Temperature Parameters
gr() Relational Conversion Functions
ξGr Curvature Estimate
KhsGr Krackhardt Hierarchy Score

from traditional Euclidean space to Riemannian Manifolds
using Fully Hyperbolic Neural Networks, achieving notable
results in machine translation tasks. Additionally, Riemannian
Manifolds are extensively used in deep learning-based graph
embedding tasks, including applications such as HypDiff [48],
HyGCAT [77] and MotifRGC [28].

III. METHODOLOGY

In this section, we first introduce the prerequisites to define
the Riemannian Manifolds space. Then we introduce the
MRME-KGC model in detail.

A. Preliminaries and Problem Formulation
1) Riemannian manifold: A Riemannian manifold M can

be concisely defined as a smooth manifold coupled with a
Riemannian metric. In geometric mathematics, most manifolds
can be regarded as Riemannian manifolds (M, gx) of dimen-
sion n. At every point x ∈ M within the Riemannian mani-
fold, the Riemannian metric gx is defined on its tangent space

TxM. Typically, the conversion between manifold vectors and
their tangent space counterparts is achieved through the loga-
rithmic and exponential maps. Specifically, logx : M → TxM
denotes the conversion of a vector in the Riemannian metric
to its tangent space, while expx : TxM → M represents
the inverse conversion via the exponential mapping. For more
detailed definitions, please refer to [26] [49] [50].

2) Curvature: The curvature K is a measure of the flatness
of the surface and determines the shape of the Riemannian
manifold. Each point x in the Riemannian manifold is as-
sociated with a curvature k and a corresponding radius of
curvature 1

|κx| . Specifically, k determines the curvature of
space, and there are three different types of M depending
on the curvature. If the constant curvature is negative, the
manifold is a hyperbolic space HK ; if the curvature is positive,
the manifold is a spherical space SK ; Euclidean space EK

is considered a typical example of a manifold with zero
curvature. Due to the differences in operations within hyper-
bolic and spherical spaces compared to Euclidean space, we
need to utilize logarithmic and exponential maps to facilitate
the conversion between each space and its respective tangent
space.

3) Problem Formulation: First, this paper defines a KG
as: G = (E ,R, T ), where E and R represent the sets
of entities and relations in the KG, respectively. T =
{(eh, r, et) | eh, et ∈ E , r ∈ R}, which represents a set of
triple combinations. Then, the KGC is formalized as a link
prediction task. It can be (h, r, ?) or (?, r, t), i.e., given relation
r of a triplet and head entity h or tail entity t, to predict tail
entity t or head entity h. By learning the vector representation
of entity E and relation R, the (h, r, t) triple is represented by
a (h, r, t) vector, where h, t ∈ Ve, r ∈ Vr (V represents
a vector space of d-dimensions, d is the vector dimension
parameter). For example, V = Ek in TransE [16] (Euclidean
space), V = Ck in RotatE [17] (complex space), and V = Hk

in RttH [22] (hyperbolic space). Additionally, the notations
used throughout this paper are summarized in Table I.
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To more effectively learn the various complex structures
within a KG and to mitigate the issue of overly dense boundary
distributions in the Poincaré Ball Model embeddings, as well
as to reduce the noise generated during the fusion of the
Poincaré Ball Model and spherical spaces, this study proposes
the MRME-KGC model. The architecture of the model is
depicted in Fig. 3. Unlike previous works [16] [22] that
defined the embedding space in either Euclidean space Ek

or hyperbolic space Hk, the MRME-KGC model incorporates
multiple views of KG representations. These views include the
Poincaré Ball view Pk, Lorentz view Lk, Sphere view Sk, and
Euclidean space view Ek. The model combines relations and
entities through a translation function. In addition, MRME-
KGC enhances the representation learning of Poincaré Ball
and sphere space through contrastive learning. Finally, the se-
mantic information contained in the complex structure of KG
is captured by combining spatial feature fusion with attention
mechanism. The MRME-KGC model predicts the tail entity
using a specific relation translation function gr : Ve1 → Ve2 ,
this function translates the head entity to the tail entity, i.e.,
gr(h) = t, and is used to measure the distance between e1 and
e2. Based on this translation function, we define the scoring
function as follows:

f : Ve1 × Vr × Ve2 → score ∈ R (1)

The score is used to measure the accuracy of each triple.
Generally speaking, the score function can be formalized
as: f(h, r, t) = p (gr(h), t), where f(h, r, t) evaluates the
plausibility of the triplet (h, r, t) by computing the distance
between the translated head entity and the tail entity in the
embedding space.

B. Detailed Description of MRME-KGC

1) Riemannian Manifolds Representation Learning: We
need to obtain representations of entities in different view
spaces. Euclidean space, hyperbolic space, and spherical space
have different properties, and their spatial structures are es-
tablished through different metrics (such as the Euclidean
metric or hyperbolic metric). To this end, this paper uses
the mapping operation proposed in [51] to project the d-
dimensional points in the Euclidean space

(
Ed
K , gE

)
into the

Poincaré ball
(
Pd
−k, g

P) with a curvature of −k (−k < 0)
and the sphere space

(
SdK , gS

)
with a curvature of k (k > 0)

through expx : TxM → M, and then project them back to
the Euclidean space using the logx : M → TxM operation.
For each point v in the tangent space TxM (Euclidean space),
and the points x and y in the Riemannian space, they can be
converted using the following formulas (2) and (3).

expkx(v) = x⊕K

(
tanh

(√
k
λx∥v∥

2

)
v√
k∥v∥

)
(2)

logkx(y) =
2√
kλx

tanh−1
(√

k ∥−x⊕k y∥
) −x⊕k y

∥−x⊕k y∥
(3)

x⊕k y =

(
1 + 2k⟨x,y⟩+ k∥y∥2

)
x+

(
1− k∥x∥2

)
y

1 + 2k⟨x,y⟩+ k2∥x∥2∥y∥2
(4)

where λx = 2
1−k∥x∥2 is the Riemannian metric,v ∈ TxMn

k ,
x,y ∈ Md

k. ⊕c represents the Möbius addition operation
proposed in [52]. Due to transformations in the overall space,
many operations that are common in Euclidean space are
no longer applicable in other spaces. In the KGC task, the
most crucial aspect is measuring the distance between enti-
ties. Distance measurement in deep learning often involves
operations such as addition, multiplication and inner products.
Fortunately, previous work [51] has extended the relevant
distance formulas from Euclidean space to Riemannian mani-
folds through tangent space mapping. As a result, the distance
formula between any two points u and v in Poincaré ball and
sphere space can be defined as:

dk(u,v) =
2√
k
tanh−1

(√
k ∥−u⊕c v∥

)
(5)

Consequently, we obtain entity representations in the d-
dimensional Euclidean space, the Poincaré ball space, and
the spherical space, denoted as Ed

k(k = 0), Pd
k(k < 0),

and Sdk(k > 0), respectively. To alleviate potential numerical
instability problems in the Poincaré ball model [28] [29] and
to better capture hierarchical semantic relationships, MRME-
KGC employs both the Poincaré ball and Lorentz hyperbolic
models. This paper formalizes the n-dimensional Lorentz
model as a Riemannian manifold

(
Ld, gxL

)
, where gxL =

diag(−1, 1, · · · , 1)is the Riemannian metric. Ln
K = (Ln, gxK )

satisfies Ld :=
{
x ∈ Rd+1

∣∣ ⟨x,x⟩L = 1
K , xa > 0

}
, where

⟨, ⟩L represents the Lorentz inner product. The Lorentz inner
product of two points x, y is defined as:

⟨x,y⟩L := −xaya + x⊤
b yb

= x⊤ diag(−1, 1, · · · , 1)y
(6)

Given every point x in Ln
K , there exists the following form:

x =

[
xa

xb

]
,x ∈ Rn+1, xa ∈ R,xb ∈ Rn For simplicity, in

the following part of this paper, the points belonging to the
Lorentz model are formalized as x ∈ Ld

K . The tangent space
for a given Ld

K at x is defined as:

TxLd
K :=

{
y ∈ Rd+1 | ⟨y,x⟩L = 0

}
(7)

where TxLd
K means that TxLd

K is in the orthogonal space
of the Lorentzian inner product of the space where point x
is located. Unlike the exponential/logarithmic mapping of the
Poincaré ball, the logarithmic and exponential mapping of the
Lorentzian model is defined as:

expk
x(α) = cosh(

√
−k∥α∥L)x+ sinh(

√
−k∥α∥L)

α√
−k∥α∥L

∥α∥L =
√

⟨α,α⟩L.
(8)

logxk(y) =
cosh−1(β)√

β2 − 1
(y − βx),

β = k⟨x,y⟩L
(9)

the logarithmic map expkx(α) : TxLd
k → Ld

k maps any tangent
vector α ∈ TxLd

k to Ld
k. The logarithmic mapping logx

k(y) :
Ld
k → TxLd

k is used to map any vector y ∈ Ln
K to the tangent
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vector TxLd
k, which plays the opposite role of the exponential

mapping.
2) Multi-view Riemannian Manifolds Fusion Enhancement:

In this section, we first generate embeddings of the four
spatial views for entity e and relation r in the KG, including
embedding Ed

k in the Euclidean space, embedding Pd
k of the

Poincare disk in the hyperbolic space, embedding Ld
k of the

Lorentz model, and embedding Sdk in the spherical space. Then
we obtain the head entity representation and the tail entity
representation of the four views after the relation conversion
function gr(e).

For transformed head entity VE
h in the Euclidean space,

we initialize h and r and obtain it through the relational
transformation function gEr () in the Euclidean space:

VE
h = gEr (h) = r · h (10)

where VE
h ∈ Ed

k, gEr (h) represents the transfer function
in Euclidean space. Similar to the conversion function of
Euclidean space, we can use the conversion functions gPr and
gSr to obtain the head entity VP

h in the Poincaré ball model
and the head entity VS

h in the Sphere Space respectively:

VP
h = gPr (h) = r ⊗k expkP(h) (11)

VS
h = gSr(h) = r ⊗k expkS(h) (12)

r ⊗k x =
1√
k
tanh

(
r tanh−1(

√
k∥x∥)

) x

∥x∥
(13)

where VP
h ∈ Pd

k ,VS
h ∈ Sdk ,r ∈ R ,⊗k represent the Möbius

multiplication operation.
Inspired by the applications of the Lorentz model in other

fields [53] [47] [54], we define the transfer function in a
different way from the Poincaré ball model. Consistent with
[53], we first initialize the Lorentz space parameters using a
Gaussian distribution in the tangent space, use an exponential
mapping to map the embedding to the hyperbolic space to
obtain the head entity h, and then use the Lorentz linear
transformation to define the relation transformation function
gLr (h):

gLr

([
h⊤

W

])
=

[ √
|Wr|2−1/k

h⊤r
h⊤

W

]
(14)

where h ∈ Ld+1
k ,W ∈ Rd×(d+1), gLr (h) ∈ R(d+1)×(d+1) is

the Lorentz linear transformation of the relation r on the head
entity through the learnable weight matrix W. The aim is to
learn a function that maps any matrix to a matrix suitable for
hyperbolic linear layers. Additionally, to ensure consistency
in the view dimensions across the four spaces, we define the
entities obtained from the Lorentz model, after applying the
relation transformation function, as follows:

VL
h = gLr

([
h⊤

W

])
r (15)

where VL
h ∈ Ld

K represents the head entity representation
of the Lorentz model after the transformation function, we
use Theorem 1. to prove the rationality of the dimensional
transformation.

Theorem 1. For entities and relationships in the Lorentz
model, there can be changes in the following dimensions:

∀r ∈ Ld
k, ∀

[
h⊤

W

]
∈ R(d+1)×(d+1) ⇒ gLr (

[
h⊤

W

]
)r ∈ Ld

k

(16)
Prof. This is easily proved using the Lorentz inner product

formula in Eq.(6). We can obtain the Lorentz inner product:〈
gLr (

[
h⊤

W

]
)r, gLr (

[
h⊤

W

]
)r

〉
L
= 1/K (17)

so we can prove that: VL
h ∈ Ld

K .

MRME-KGC maps the embeddings of EK , PK , LK and
SK to the tangent space through logarithmic mapping and em-
ploys an attention mechanism to better capture the geometric
information of each view. Finally, the predicted tail entity tp
is obtained through the prediction function as follows:

tp = ϕ
(
VE

h ,VP
h ,VL

h ,VS
h

)
= ⊙

(
αh
EVE

h , α
h
P logkx

(
VP

h

)
, αh

L logkx

(
VL

h

)
, αh

S logkx

(
VS

h

))
(18)

where ⊙ represents the concat operation, it connects the
embeddings in different view spaces along the specified di-
mension. α is the attention vector and (αh

E , α
h
P , α

h
L, α

h
S) =

Softmax
(
αTVE

h , α
TVP

h , α
TVL

h , α
TVS

h

)
. Typically, when not

considering the extension of Euclidean space to Riemannian
manifolds, the process of propagating information from the
head entity to the tail entity and vice versa is the same (e.g.,
in models like TransE [16]). However, previous work [27] has
pointed out that fundamental operations in hyperbolic space,
such as Möbius addition, do not satisfy commutativity. This
indicates that the information propagation from the head entity
to the tail entity and from the tail entity to the head entity
differs in direction. To address this issue, we enhance the infor-
mation transmission in Riemannian spaces by simultaneously
utilizing the embeddings of head and tail entities from different
Riemannian spaces when constructing the score function. Get
the head entity hp given the tail entity and relation prediction
in the same way as Eq.(19):

hp = ϕ
(
VE

t ,VP
t ,VL

t ,VS
t

)
= ⊙

(
αt
EVE

t , α
t
P logkx

(
VP

t

)
, αt

L logkx

(
VL

t

)
, αt

S logkx

(
VS

t

))
(19)

the meaning of the formula characters in Eq.(19) is similar
to that in Eq.(18). Where, VE

t ,VP
t ,VL

t ,VS
t are obtained by

functions gEr ′
(t), gPr ′

(t), gLr ′
(t), gSr ′

(t) respectively, r′ represents
the inverse relation of r.

After integrating the head and tail entity information from
different spaces, we designed the scoring function of MRME-
KGC, which simultaneously considers the two-way message
passing between the head and tail entities:

f(h, r, t) = − |dc(tp, t) + dc(hp, h)|+ γ (20)
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where dc(·) represents the distance function and γ is the
margin deviation. Then the cross entropy loss function is used
to train the predictive ability of the model:

Lp =
∑

(h,r,t)∈{G∪G ′}

log
(
1 + exp

(
Θ(h,r,t) · f(h, r, t)

))
in which, Θ(h,r,t) =

{
1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′

(21)

where G ∪ G′ represents the set of positive and negative
samples of the triple after a random replacement operation
similar to [16]. f(·) represents the score function of the model.

3) Riemannian Manifolds Contrastive Learning Method:
As an effective unsupervised learning method, contrastive
learning learns useful feature representations by comparing the
similarities and differences between samples and has achieved
remarkable success in many tasks. This article explores and
proposes a contrastive learning method, and hopes that it can
contribute to the KGC model based on Riemannian Manifolds.

In addition to addressing the issues described in the intro-
duction for Riemannian Manifolds models, there is another
noteworthy problem. The difference between the Poincaré
Ball view and the Spherical space view lies merely in their
curvature; both views achieve space transformation through
the same mapping operations, implying that these two views
are essentially isomorphic. To mitigate the potential noise that
might arise from the fusion of the Poincaré Ball view and
the Spherical space view, this paper intends to use contrastive
learning to increase the distance between these two view
spaces, thereby reducing potential noise. To this end, this paper
proposes a contrastive learning method called M-CL. The core
idea is to find an anchor point in both the Poincaré Ball
and the spherical space that best represents their respective
characteristics, as illustrated in the model diagram (Fig. 3).
This anchor point is treated as the positive sample within its
respective view, while points from the other view are treated as
negative samples. The purpose of this approach is to achieve
better representation learning by pulling closer the distances
between entities within the same space and pushing apart the
distances between points from different views.

Specifically, we employ two methods to find anchor points.
We define the entity sets in the Poincaré Ball view and
the Spherical space view as P =

{
ep1, e

p
2, . . . , e

p
|P|

}
and

S =
{
es1, e

s
2, . . . , e

s
|S|

}
respectively. In the first method,

M1, the weighted averages of the respective entity sets are
calculated and considered as the anchor points Cp and Cs.
In the second method, M2 (optimal), we utilize the K-means
clustering approach, applying the distance formula in Eq.(5) to
perform the clustering. The centroids of the clusters generated
from the Poincaré Ball view and the Spherical space view are
taken as the anchor points, yielding Cp and Cs similarly. We
implement the contrastive learning method using the InfoNCE
loss function:

Lc =
∑
e∈E

− log
exp (e · ci/τ)∑

c
j

∈C̸=i exp (e · cj/τ) + exp (e · ci/τ)
(22)

where C ∈ Cp ∪ Cs , E = S ∪ P and τ represents the
temperature parameter in contrastive learning.

4) Loss Function and Training: To train the MRME-KGC
model proposed in this paper, the total loss function L of the
model consists of two parts:

L = Lp + Lc (23)

Among them, Lp and Lc represent the cross entropy loss
function and the contrastive learning loss function used for
prediction, respectively. Furthermore, consistent with most
Riemannian manifold-based works [25] [27] [22], MRME-
KGC employs the N3 regularization method and Adagrad [55]
as the optimizer. Additionally, the model follows the approach
in [16], where negative samples are generated by randomly
corrupting either the head or tail entities and then filtering the
results to form the training set.

IV. EXPERIMENT AND ANALYSIS

In this section, we first elaborate on the setup and procedure
of the experiment in detail. Next, we conduct a comparative
analysis of the MRME-KGC model proposed in this paper
against state-of-the-art KGC baseline models on multiple
datasets for the main link prediction experiment, to validate the
effectiveness of the MRME model. Additionally, we perform
extensive supplementary experiments on the MRME-KGC
model to evaluate various performance metrics. These exper-
iments include ablation studies, fine-grained relationship ex-
periments, experiments under low-dimensional dense features,
studies on the impact of embedding dimensions on model
performance, model training convergence experiments, and
parameter sensitivity analysis, to understand the characteristics
and performance of the MRME-KGC model comprehensively.

A. Experiment Setup

1) Datasets: We conducted extensive link prediction exper-
iments on six different types of benchmark datasets, including
three classic datasets: FB15K-237, WN18RR, YAGO3-10, a
commonsense dataset CN100K, and two small datasets from
the domains of social relationships and biomedicine: Kinships
and UMLS. Detailed statistics of these datasets can be found
in Table II.

• FB15K-237 [56], WN18RR [40], and YAGO3-10 [57] are
standard datasets widely used for knowledge graph com-
pletion. YAGO3-10 is a subset extracted from YAGO3,
focusing on entities involved in at least ten different
relations, making it suitable for evaluating the ability
to handle complex interactions and multiple relations.
FB15K-237 and WN18RR are improved versions of the
original datasets [16], designed to reduce test set leakage
by removing redundant and reversible relations.

• The CN-100K [60] dataset originates from ConceptNet,
a large multilingual commonsense knowledge graph.
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TABLE II
DATASET STATISTICS.

Dataset #Entity #Relation #Train #Valid #Test ξG

WN18RR 40,943 11 86,835 3,3034 3,314 -2.54
FB15K-237 14,541 237 272,115 17,535 20,466 -0.65
YAGO3-10 123,182 37 1,079,040 5,000 5,000 -0.54
Kinships 104 26 8,544 1,068 1,074 -
UML-S 135 46 5,216 652 661 -
CN-100K 78,334 34 100,000 1,200 1,200 -

ConceptNet contains a diverse range of commonsense
knowledge. The number of nodes in CN-100K is several
orders of magnitude larger than in conventional datasets
such as FB15K-237. Moreover, CN-100K is much sparser
than traditional KGs (FB15K-237), which increases the
difficulty of training.

• Kinships [58] and UMLS [59] are two small datasets.
Kinships contain social network information from indige-
nous Australian communities, reflecting complex family
structures and social relationships, while UMLS covers
biomedical terminology, encompassing multiple domains
such as drugs, diseases, treatments, and anatomical struc-
tures.

2) Baselines: We compare our experimental results with
the following state-of-the-art models: TransE [16], ExpressivE
[19], VLP [61], CompoundE [20], GreenKGC [18], Mixup
[21] , HAKE-SymCL [63], TDN [64], HyboNet [47], M2GCN
[25], GIE [27], RESCAL-FFHR [65], NFE [24], TransERR
[66], FFTRotH [67], UniGE [68], and MGTCA [69], among
the main experimental baseline models. Additionally, we in-
clude baseline models from other experiments such as RelEns-
DSC [62], DRGI [71], LorentzKG [75] and OERL [70].

3) Evaluation metrics: To evaluate the performance of
MRME-KGC on the KGC task, we employ four key metrics:
Mean Reciprocal Rank (MRR) and Hits@1, Hits@3, and
Hits@10. MRR is a metric used to assess the ranking quality
of the prediction results. For each test query (typically a triplet
in a missing link prediction task), the model generates a ranked
list of candidate entities. MRR is the average of the reciprocal
ranks of these prediction results. Hits@N is another widely
used evaluation metric in the KGC domain. It measures the
proportion of correct entities ranked within the top N positions
by the KGC model. This metric is particularly useful for
assessing the ranking performance of models in predicting
missing links in knowledge graphs. The definitions of MRR
and Hits@N are as follows:

MRR =
1

|S|

|S|∑
i=1

1

ranki
=

1

|S|

(
1

rank1
+

1

rank2
+ . . .+

1

rank|S|

)
(24)

where S denotes the set of triples, |S| represents the number
of triples in the set, and ranki is the link prediction rank of
the i-th triple.

Hits@N =
1

|S|

|S|∑
i=1

I (ranki ≤ n) (25)

the function II(·) employed in our analysis is an indicator
function, which outputs a value of 1 if the specified condition

is satisfied and 0 otherwise. In our experiments, the indicator
function is evaluated at different thresholds, commonly using
values of n such as 1, 3, or 10. These values correspond to
common metrics in KGC tasks, specifically Hits@1, Hits@3,
and Hits@10, respectively.

4) Implementation Detail: We implemented the MRME-
KGC model using the PyTorch library [72], the Riemannian
methods library geoopt [53]1, and Adagrad [55] as the model
optimizer. All computational experiments in this paper were
conducted on a Linux server equipped with an Intel Xeon
Gold 6226R processor (2.90GHz) and four Nvidia GTX 3090
GPUs. The model hyperparameters were selected through grid
search to determine the optimal choices for MRME-KGC on
each dataset, based on a combined evaluation of MRR and
Hits@N. Due to the GPU memory limitations of the server,
the embedding dimension for MRME-KGC was restricted to
50 dimensions on the YAGO3-10 dataset, while 100 dimen-
sions were chosen for the other datasets. For future research,
the MRME-KGC source code of the model is available on
GitHub2.

B. Main Results

To validate the intuitive effectiveness of the MRME-KGC
model, we report the comparative performance of MRME-
KGC against relevant baseline models in this section. The
experimental results of MRME-KGC on six different types
of datasets are presented in Tables III, IV, and V. Table VI
shows the experimental results of MRME-KGC under low-
dimensional conditions (d=32).

1) Experimental results of the MRME-KGC model on main-
stream KG datasets: From Table III, it is evident that our
proposed MRME-KGC model achieves superior performance
compared to the most recent state-of-the-art baseline models.
Specifically, in comparison to the GIE model, which also con-
siders multiple spaces, MRME-KGC achieves improvements
of 24.31%, 39.48%, 18.70%, and 6.88% on the FB15K-237
dataset in terms of MRR, Hits@1, Hits@3, and Hits@10,
respectively. On the WN18RR dataset, MRME-KGC shows
enhancements of 12.02%, 12.17%, 12.28%, and 10.96% across
the same metrics. Similarly, on the YAGO3-10 dataset, the
improvements are 17.16%, 23.43%, 13.73%, and 8.25%, re-
spectively. These results indicate that simultaneously consid-
ering the Lorentz model and Poincaré ball model views can
effectively capture the hierarchical structure of KGs, leading
to better performance.

Additionally, as shown in Table III, MRME-KGC improves
by 1%-29% across various metrics compared to the cur-
rent state-of-the-art baseline models. Notably, MRME-KGC
achieves optimal results with only 100 dimensions for the
FB15K-237 and WN18RR datasets and 50 dimensions for the
YAGO3-10 dataset, whereas other baseline models (UniGE,
MGTCA, etc.) typically use 200-500 dimensions. These find-
ings demonstrate that MRME-KGC can encode more semantic
information with fewer dimensions, highlighting the necessity
of using multiple spatial views to represent KGs. Moreover,

1https://github.com/geoopt/geoopt
2https://github.com/2391134843/MRME-KGC
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TABLE III
LINK PREDICTION MAIN RESULTS OF MRR AND HITS@K ON FB15K-237, YAGO3-10, AND WN18RR DATASETS. THE BEST SCORE IS IN BOLD AND

THE SECOND BEST SCORE IS UNDERLINED. GAINS REPRESENT THE IMPROVEMENT RATIO COMPARED TO THE SUBOPTIMAL RESULT. THE
EXPERIMENTAL RESULTS OF THE BASELINE MODELS ARE TAKEN FROM THEIR RESPECTIVE ORIGINAL PAPERS.

Model FB15K-237 WN18RR YAGO3-10
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Euclidean approaches
ExpressivE(2023) 0.333 24.3 36.6 51.2 0.464 46.4 52.2 59.7 - - - -
VLP(2023) 0.362 27.1 39.7 54.2 0.498 45.5 51.4 58.2 - - - -
CompoundE(2023) 0.367 27.5 40.2 55.5 0.493 0.451 0.507 0.578 0.491 45 50.8 57.6
GreenKGC(2023) 0.345 26.5 36.9 50.7 0.345 36.7 43 49.1 0.453 36.1 50.9 62.9
RelEns-DSC(2023) 0.368 27.4 40.4 55.5 0.520 47.7 53.7 60.3 - - - -
HAKE-SymCL(2024) 0.346 24.8 38,4 54.4 0.497 45.4 51.5 58.5 - - - -
TDN(2023) 0.358 27.3 40.3 56,1 0.499 45.5 52.3 57.9 - - - -
Mixup(2023) 0.281 - - 45.3 0.422 - - 48.8 - - - -

Non-Euclidean approaches
HyboNet(2022) 0.352 26.3 38.7 52.9 0.513 48.2 52.7 56.9 - - - -
M2GNN(2021) 0.362 27.5 39.8 56.5 0.485 44.4 49.8 57.2 0.543 47.8 60.5 70.2
RESCAL-FFHR(2023) 0.345 25.6 37.9 52.1 0.468 42.2 49.0 55.2 - - - -
TransERR(2023) 0.36 26.4 39.6 55.5 - - - - 0.49 40.4 53.8 64.7
FFTRotH(2022) 0.319 22.8 35.2 50 0.484 43.7 50.2 57.2 - - - -
LorentzKG(2024) 0.384 28.7 42.2 57.9 0.502 45.6 52.3 58.9 - - - -
GIE(2022) 0.362 27.1 40.1 55.2 0.491 45.2 50.5 57.5 0.579 50.5 61.8 70.9
NFE(2023) 0.355 26.1 - 54.3 0.483 43.8 - 57.6 0.570 - 49.8 69.7
UniGE(2024) 0.357 26.4 39.1 55.9 0.502 45.5 52 59.2 58.3 51.2 62.7 71.5
MGTCA(2024) 0.393 29.1 40.1 58.3 0.511 47.5 52.5 59.3 0.586 51.4 62.9 72.1

Our methods
MRME-KGC(ours) 0.45 37.8 47.6 59 0.55 50.7 56.7 63.8 68.3 63.2 71.3 77.4
Gains(%) 14.50 29.80 17.80 1.20 5.70 5.10 5.50 5.45 17 22 13.30 7.30

we observe a significant improvement in the Hits@1 metric,
which is due to most models’ inability to handle the complex
structure of KGs effectively, resulting in less accurate predic-
tions. MRME-KGC, by capturing structural information across
multiple views, can learn more reliable KG representations,
leading to more accurate Hits@1 results.

2) Experimental results of the MRME-KGC model on
Common-Sense KG datasets : To further validate the effective-
ness of MRME-KGC from multiple perspectives, we selected
the commonsense KG dataset CN-100K for model evaluation.
Unlike mainstream KG datasets (such as FB15K-237), the
commonsense KG dataset has more nodes, making the entire
KG sparser (with an average in-degree of 16.98 for FB15K-
237 compared to only 1.25 for CN-100K) [73]. Generally,
sparser KGs are more challenging to learn from, so we chose
the CN-100K dataset for our experiments.

Table IV reports the experimental results of MRME-KGC
on the CN-100K dataset. Compared to GIE, MRME-KGC
improves by 24.64%, 38.94%, 6.90%, and 5.29% in terms of
MRR, Hits@1, Hits@10, and Hits@100, respectively. Addi-
tionally, it is evident that earlier KGC methods, such as TransE
and RotatE, struggle significantly with the CN-100K dataset,
resulting in generally low-performance metrics. Even models
like OERL [70] fall significantly behind MRME-KGC in the
Hits@1 metric. These observations strongly demonstrate the
superiority of MRME-KGC, as it consistently achieves state-
of-the-art results even when faced with more complex KG
datasets.

3) Experimental results of the MRME-KGC model on Kin-
ships and UMLS KG datasets: To evaluate MRME-KGC’s
performance across a broader range of KG datasets, we se-
lected two classic small datasets: Kinship and UMLS. Table V
summarizes the comparison between our MRME-KGC model
and baseline models on these simpler, less complex datasets.
On Kinship, MRME-KGC achieved the best results across
all metrics, particularly excelling in Hits@1 with a 22.22%
improvement over TDN. It also showed increases of 12.68% in

TABLE IV
EXPERIMENTAL RESULTS ON THE CN-100K DATASET. ♣ REPRESENTS

THE RESULT OF THE REPRODUCTION. THE RESULTS OF OTHER BASELINE
MODELS ARE TAKEN FROM [70]

Model MRR H@1 H@10 H@100
Head Tail Avg Head Tail Avg Head Tail Avg Head Tail Avg

TransE 16.2 0.171 16.69 2.33 2.00 2.17 41.67 43.92 42.79 67.83 67.50 67.67
TransD 14.97 15.02 14.99 1.67 1.67 1.67 37.83 39.67 38.75 63.17 64.00 63.58
ComlEx 14.83 13.16 13.99 6.83 5.58 6.21 31.67 28.42 30.04 60.25 57.42 58.83
RotatE 20.06 21.99 21.02 6.92 8.50 7.71 44.33 48.42 46.38 71.67 73.17 72.42
ConvE 21.04 23.78 22.41 13.00 14.33 13.67 37.50 42.42 39.96 66.17 66.00 66.08
OERL+MLP 31.25 33.16 32.20 20.75 22.33 21.54 54.08 55.58 54.83 83.00 75.50 79.25
OERL+Mean 34.75 39.25 37.00 22.33 28.50 25.42 60.50 60.67 60.58 86.75 77.50 82.13
OERL 36.57 40.33 38.45 24.42 29.08 26.75 63.00 62.25 62.63 88.50 77.67 83.08
GIE♣ - - 56.00 - - 47.6 - - 71.60 - - 83.42
MRME-KGC 66.50 73.10 69.80 63.50 68.74 66.12 74.00 79.08 76.54 85.17 90.49 87.83

TABLE V
EXPERIMENTAL RESULTS ON THE KINSHIP AND UML DATASET. THE

RESULTS OF THE BASELINE MODELS ARE TAKEN FROM [64]. THE BEST
RESULT AND THE SECOND-BEST RESULT ARE INDICATED IN BOLD AND

UNDERLINED RESPECTIVELY.

Model Kinship UMLS

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.211 9.3 25.2 47.00 0.615 39.1 80.7 94.5
RotatE 0.738 61.7 82.7 95.4 0.4433 48.42 46.38 71.67
ConvE 0.772 66.5 85.8 95.0 0.836 76.4 91.7 94.6
DRGI 0.847 0.981 91.5 76.5 0.898 83.8 94.8 98.8
TND(TransE) 0.858 77.5 93.4 98.5 0.961 92.6 98.3 99.9
TND(DistMult) 0.867 78.8 94.2 98.6 0.963 92.6 98.5 99.9
MRME-KGC 0.977 96.3 98.8 99.4 0.976 96.1 99.0 99.7

MRR, 4.88% in Hits@3, and 0.81% in Hits@10. For UMLS,
MRME-KGC performed best in MRR, Hits@1, and Hits@3,
with improvements of 1.35%, 3.78%, and 0.51%, respectively,
and was only 0.2% behind TND in Hits@10. These results
demonstrate MRME-KGC’s superiority, especially in Hits@1,
emphasizing the importance of considering multiple views
simultaneously.

4) Experimental results under low-dimensional conditions
on mainstream datasets: To evaluate the effectiveness of
MRME-KGC in a low-dimensional (d=32) setting, we fol-
lowed the experimental setup in fellow [68] and conducted
experiments on three datasets. Table VI presents a comprehen-
sive comparison between MRME-KGC and Riemannian-based
baselines of the same type. It is evident that MRME-KGC

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3538110

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Yunnan University. Downloaded on March 13,2025 at 05:36:20 UTC from IEEE Xplore.  Restrictions apply. 



10

TABLE VI
LINK PREDICTION RESULTS (%) ON WN18RR, FB15K-237 AND YAGO3-10 FOR LOW-DIMENSIONAL EMBEDDINGS (d = 32). ALL BASELINE RESULTS

ARE TAKEN FROM [68]. THE BEST SCORES ARE IN BOLD.

Model WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 36.6 27.4 43.3 51.5 29.5 21.0 32.2 46.6 - - - -
RotatE 38.7 33.0 41.7 49.1 29.0 20.8 31.6 45.8 - - - -
ComplEx 42.1 39.1 43.4 47.6 28.7 20.3 31.6 45.6 33.6 25.9 36.7 48.4
MuRE 45.8 42.1 47.1 52.5 31.3 22.6 34.0 48.9 23.8 18.7 31.7 47.8
MuRP 46.5 42.0 48.4 54.4 32.3 23.5 35.3 50.1 23.0 15.0 24.7 39.2
RotH 47.2 42.8 49.0 55.3 31.4 22.3 34.6 49.7 33.4 26.4 41.5 55.9
RefH 44.7 40.0 46.4 51.8 32.2 23.4 36.0 50.4 36.3 30.6 43.5 56.3
AttH 46.1 40.9 49.0 55.1 33.0 23.9 36.0 51.4 39.7 31.0 44.7 57.6
UltraE 48.8 44.0 50.3 55.8 33.6 24.7 37.1 51.4 38.0 31.8 44.4 57.2
GIE 43.4 41.0 44.2 48.2 33.0 24.3 36.2 50.5 43.1 34.7 45.9 57.7
UniGE 49.1 44.7 51.2 56.3 34.5 25.7 37.5 52.3 41.2 35.2 51.4 57.9
MRME-KGC 49.8 46.8 51.9 56.2 35.9 28.6 38.3 52.4 46.5 37.6 49.7 59.7

performs excellently across all datasets and most evaluation
metrics, particularly showing a 4%-11% improvement in MRR
and Hits@1 compared to UniGE. In the YAGO3-10 dataset,
although the Hits@3 metric is slightly inferior to UniGE,
MRME-KGC outperforms all other metrics. This indicates
that MRME-KGC maintains high prediction accuracy in low-
dimensional scenarios, surpassing existing baseline models.

C. Experiments on Model Training Processes

To further understand the changes in metrics during the
model training process, we conducted extensive experiments
and plotted Fig. 4 to demonstrate the superiority of MRME-
KGC. Fig. 4 illustrates the changes in Hits@1, Hits@3,
Hits@10, and MRR for MRME-KGC compared to baseline
models based on Riemannian Manifolds (AttH, RotH, GIE)
across four datasets: FB15k-237, WN18RR, CN100K, and
UMLS. Overall, MRME-KGC consistently outperforms the
baseline models in MRR and Hits@N across all datasets,
demonstrating advantages such as faster convergence, higher
performance more quickly, and greater stability with fewer
fluctuations during training.

In addition, several interesting phenomena warrant discus-
sion. First, like the baseline models, MRME-KGC shows
rapid improvements in metrics within the first 20-30 epochs
across all datasets, indicating that the architecture and learning
mechanisms of Riemannian Manifolds-based KGC models are
effective in capturing relational information early in training.
Second, all models exhibit steeper slopes in their training
curves for the UMLS dataset, suggesting faster semantic
information acquisition from simpler datasets, leading to faster
convergence. Third, although the learning speed on the FB15k-
237 dataset is slower, MRME-KGC still surpasses the baseline
models in the end; this may be due to a lower learning
rate used during the FB15k-237 experiments compared to the
baseline models. Finally, the excellent results of MRME-KGC
show that it is very important to consider multiple views at
the same time for the KGC task, which can not only speed
up the model convergence efficiency, but also achieve better
performance.

D. Experiments and Analysis of Model Dimensionality and
Parameter Sensitivity

To evaluate the robustness and stability of the model, we
conducted a series of comparative experiments with baseline
models and parameter sensitivity experiments. The main pa-
rameters we studied include the embedding dimension and the
comparative learning parameter τ .

1) Comparative experiments with baseline models in differ-
ent dimensions: We evaluated the performance of the MRME-
KGC model and two baseline models (GIE and RTTH) on
two datasets (WN18RR and FB15K-237), focusing on four
metrics: Hits@10, Hits@3, Hits@1, and MRR. The baseline
models AttH [22], RotH [22], and GIE [27] were reproduced
using their respective open-source GitHub addresses. Some
other models did not publish their code addresses and could
not be used for experiments. The analysis covered various
embedding dimensions (16, 32, 50, 64, 100). As shown in Fig.
5, MRME-KGC consistently outperforms the baseline models
across different dimensions. Notably, its performance is par-
ticularly strong at higher dimensions (64, 100), demonstrating
its robust capability in capturing complex relationships within
KGs. These results also confirm that MRME-KGC maintains
high accuracy and predictive power even with varying embed-
ding dimensions.

2) Comparative learning parameter τ sensitivity experi-
ment : As shown in Fig. 6, we analyzed the impact of the
contrastive learning parameter τ on the MRME-KGC model
across four metrics on two datasets. The results indicate that τ
has minimal effect on MRR, Hits@1, and Hits@3. However,
Hits@10 is somewhat affected by variations in τ , likely due
to Hits@10 being a less precise metric that measures the hit
rate within the top 10 predictions. When the model fails to
accurately predict the top 1 correct entity, fluctuations in τ
influence the distances in the Poincaré disk and sphere space.
Overall, the experimental results demonstrate that the MRME-
KGC model exhibits low sensitivity to the τ parameter, with
performance remaining relatively stable across different τ
values, indicating strong robustness.

E. Ablation Experiment

Table VII reports detailed ablation experiments on the
MRME-KGC model, where M1 represents the experimental
results using the M1 method for anchor point computation
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Fig. 4. Training processes compared with MRR and Hits@1,3,10 on FB15k-237 , WN18RR ,CN100K and UML datasets.

Fig. 5. Parameter sensitivity experimental results of the comparative learning parameter τ on the FB15K-237 and CN100K datasets.

Fig. 6. Comparison of experimental results with baseline models under
different dimensionality changes on FB15K-237 and WN18RR datasets.

in contrastive learning. Overall, our proposed modules are
each effective, as shown by the percentage decrease relative
to MRME-KGC upon ablating each component.

First, we observe that the model performance significantly
drops when the Lorentz model is removed, indicating the
necessity of considering both the Poincaré ball and the Lorentz

model in hyperbolic modeling as we proposed. Secondly,
removing the contrastive learning module results in a per-
formance decline, demonstrating that our proposed M-CL
better models complex KG and alleviates boundary issues
in the Poincaré ball view and sphere view. Thirdly, we con-
ducted ablation experiments to assess the impact of removing
the Euclidean, Poincaré Ball Model, and Sphere spaces on
the performance of MRME-KGC. The experimental results
indicate that the Mean Reciprocal Rank (MRR) metric of
the model decreased by approximately 3% after the removal
of these spaces, and other metrics also showed a decline.
These findings confirm that each space uniquely contributes
to enhancing the model’s representation and performance in
KGC tasks. Finally, we note that the performance significantly
decreases when the attention mechanism is removed. This
suggests that simply concatenating embeddings from the four
views increases noise, preventing the model from learning
the semantic information inherent in the complex structure of
KGs. It also highlights that the attention mechanism effectively
integrates representations from multiple views.
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TABLE VII
IN THE ABLATION EXPERIMENTS ON THE FB15K-237 AND WN18RR DATA SETS, WE GRADUALLY DESTROYED THE LORENTZ MODEL AND THE

CONTRASTIVE LEARNING MODULE. (%) REPRESENTS THE PERCENTAGE OF EFFECT REDUCTION.

FB15K-237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

MRME-KGC-M2 0.45 37.8 47.6 59.0 0.55 50.7 56.7 63.8
W/0 Lorentz 0.368(18.22%) 28.2(25.40%) 40.6(14.71%) 56.3(4.58%) 0.494(9.46%) 45.9(10.18%) 51.4(9.35%) 59.0(7.53%)

W/0 Contrastive learning 0.443(1.56%) 36.3(3.97%) 46.1(3.15%) 57.8(2.03%) 0.531(3.45%) 49.8(1.77%) 54.9(3.17%) 62.2(2.51%)
MRME-KGC-M1 0.441(2.00%) 36.0(4.76%) 46.3(2.73%) 57.5(2.54%) 0.529(3.82%) 49.1(3.15%) 54.6(3.70%) 61.7(3.29%)

W/O attention fusion 0.378(16%) 26.6(29.63%) 39.1(17.86%) 42.7(27.63%) 0.465(15.45%) 42.57(16.03%) 47.97(15.36%) 54.26(14.96%)
W/0 Euclidean 0.435(3.31%) 36.24(4.12%) 45.83(3.74%) 57.58(2.40%) 0.534(2.94%) 48.99(3.37%) 55.00(3.05%) 62.17(2.53%)

W/0 Poincaré Ball Model 0.436(3.05%) 36.36(3.78%) 46.04(3.27%) 57.89(1.88%) 0.539(1.96%) 49.75(1.89%) 55.39(2.29%) 62.53(2.02%)
W/0 Sphere 0.435(3.31%) 36.12(4.47%) 46.00(3.50%) 57.68(2.23%) 0.536(2.56%) 49.47(2.43%) 55.20(2.64%) 62.47(2.08%)

TABLE VIII
FINE-GRAINED EXPERIMENTAL RESULTS OF EACH RELATION ON THE HITS@10 METRIC ON THE WN18RR DATASET. THE BEST RESULT AND THE

SECOND-BEST RESULT ARE INDICATED IN BOLD AND UNDERLINED RESPECTIVELY.

Relation Name KhsG
r

ξG
r

RotatE QuatE CompoundE MuRMP GIE UniGE MRME-KGC

also see 0.36 -2.09 0.627 0.607 0.629 0.72 0.759 0.768 0.787
derivationally related form 0.4 -3.84 0.957 0.952 0.956 0.97 0.968 0.964 0.9767

has part 1 -1.43 0.205 0.21 0.2 0.316 0.334 0.341 0.3779
hypernym 1 -2.46 0.154 0.172 0.179 0.232 0.262 0.274 0.3813

instance hypernym 1 -0.82 0.324 0.362 0.351 0.491 0.501 0.511 0.8443
member meronym 1 -2.9 0.255 0.236 0.254 0.35 0.36 0.357 0.4506

member of domain region 1 -0.78 0.243 0.14 0.401 0.349 0.404 0.437 0.431
member of domain usage 1 -0.74 0.277 0.372 0.309 0.42 0.438 0.437 0.442

similar to 0.07 -1 1 1 1 1 1 1 1
synset domain topic of 0.99 -0.69 0.334 0.395 0.382 0.445 0.435 0.446 0.7807

verb group 0.07 -0.5 0.968 0.93 0.974 0.981 0.984 0.981 0.984

F. Fine-Grained Experiments on Each Relationship

To investigate the model’s performance on individual rela-
tions, we conducted fine-grained experiments on WN18RR.
Two primary metrics assess the hierarchical structure of
relations: curvature estimation ξG (indicating the tree-like
hierarchy of the graph) and Krackhardt hierarchy score KhsG

r

(indicating the number of small cycles in the graph). Curvature
estimation captures global hierarchical behavior, while the
Krackhardt score captures local behavior. Detailed calculations
for these metrics are provided in the [22] [23].

From Table VIII, several observations can be made:
First, in highly hierarchical settings, Riemannian Manifolds-
based models outperform those based on Euclidean/complex
space. Second, MRME-KGC achieved the best performance
in 10 out of 11 relations. Additionally, results on the
instance hypernym relation indicate that the model per-
forms well even in less hierarchical structures. Lastly, MRME-
KGC improved performance by approximately 22.31% over
GIE and 20.28% over UniGE [68] across the 11 relations.
These findings demonstrate that MRME-KGC significantly en-
hances performance over baseline models in handling various
fine-grained relations. Overall, MRME-KGC’s fusion of four
views combined with contrastive learning yields impressive
results, performing well across different relations.

V. CONCLUSION

In this paper, we propose a knowledge graph completion
model based on Riemannian Manifolds fusion and contrastive
learning, named MRME-KGC. MRME-KGC enhances knowl-
edge graph modeling by simultaneously considering four
perspectives: two negative-curvature hyperbolic Riemannian
spaces, a zero-curvature Euclidean Riemannian space, and
a positive-curvature spherical Riemannian space. The fusion

of these four perspectives strengthens the model’s capabil-
ity. Additionally, we introduce a contrastive learning method
tailored for Riemannian spaces to mitigate noise and repre-
sentation issues arising from multi-view Riemannian manifold
fusion. Furthermore, the model’s training is improved through
a bidirectional scoring function. Extensive experiments on
six different types of datasets demonstrate that MRME-KGC
achieves highly effective performance.

In future work, we aim to explore the potential of more
complex operations on Riemannian Manifolds within the con-
text of KGC. In addition, we will investigate the integration of
the MRME-KGC model into dynamic knowledge graphs and
multimodal knowledge graphs.
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plex embeddings for simple link prediction,” in International conference
on machine learning. PMLR, 2016, pp. 2071–2080.

[35] L. Li, X. Zhang, Z. Jin, C. Gao, R. Zhu, Y. Liang, and Y. Ma,
“Knowledge graph completion method based on quantum embedding
and quaternion interaction enhancement,” Information Sciences, vol.
648, p. 119548, 2023.

[36] Z. Zhang, J. Cai, Y. Zhang, and J. Wang, “Learning hierarchy-aware
knowledge graph embeddings for link prediction,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34, no. 03, 2020, pp.
3065–3072.

[37] W. R. Hamilton, “Lxxviii. on quaternions; or on a new system of
imaginaries in algebra: To the editors of the philosophical magazine and
journal,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 25, no. 169, pp. 489–495, 1844.

[38] S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge graph em-
beddings,” Advances in neural information processing systems, vol. 32,
2019.

[39] L. Li, X. Zhang, Y. Ma, C. Gao, J. Wang, Y. Yu, Z. Yuan, and Q. Ma, “A
knowledge graph completion model based on contrastive learning and
relation enhancement method,” Knowledge-Based Systems, vol. 256, p.
109889, 2022.

[40] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d
knowledge graph embeddings,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 32, no. 1, 2018.

[41] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A
novel embedding model for knowledge base completion based on
convolutional neural network,” arXiv preprint arXiv:1712.02121, 2017.

[42] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, and P. Talukdar, “In-
teracte: Improving convolution-based knowledge graph embeddings by
increasing feature interactions,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 03, 2020, pp. 3009–3016.

[43] I. Balazevic, C. Allen, and T. Hospedales, “Multi-relational poincaré
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