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A B S T R A C T

The current few-shot relational triple extraction (FS-RTE) techniques, which rely on prototype networks, have
made significant progress. Nevertheless, the scarcity of data in the support set results in both intra-class
and inter-class gaps in FS-RTE. Instances with restricted support sets make capturing the various features of
target instances in the query set difficult, resulting in intra-class gaps. The support set lacks discernible target
category characteristics, and the distances between data from various categories are insufficient, leading to
intra-class gaps. In this paper, we propose an FS-RTE method based on support-query prototype guidance and
enhancement (SQGE). It includes a support-query prototype guide module, which creates query prototypes
based on the support prototype and combines the two prototypes. The fusion prototype can accurately capture
the fundamental feature that aligns with the query set, suitably match the query features, and reduce the intra-
class gap. Furthermore, to address the inter-class gap, we employ entity-level feature enhancement to improve
the feature representation of target entities belonging to the same class. On the other hand, we construct
positive and negative instances of the target class through contrastive learning, which not only strengthens
the representation of the same target class but also distinguishes the feature space of the target class from
other classes. Extensive experimental results on three datasets demonstrate the effectiveness of our approach.
All the code and data are made available in https://github.com/gao929165733/SQGE_code.
1. Introduction

As a critical task in information extraction (Li, Sun, Han, & Li, 2020;
Sarawagi et al., 2008; Wang, Cao, De Melo, & Liu, 2016), relation triple
extraction plays a vital role in constructing knowledge graphs (Hogan
et al., 2021). A relational triplet consists of entities and relations,
which describe the relation between two entities. For example, give the
sentence ‘‘Jay Chou is a famous Chinese singer and actor.’’, we can extract
the triple ⟨‘‘Jay Chou’’, ‘‘nationality ’’, ‘‘China’’⟩, where ‘‘nationality ’’ is
the relation between head entity ‘‘Jay Chou’’ and tail entity ‘‘China’’.

Significant results have been obtained with supervised learning-
based RTE methods (Cunningham, Cord, & Delany, 2008), such as
TPLinker (Wang, Yu et al., 2020), CasRel (Wei, Su, Wang, Tian, &
Chang, 2020), PRGC (Zheng et al., 2021), and OneRel (Shang, Huang,
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& Mao, 2022). Nevertheless, these techniques heavily depend on exten-
sively annotated datasets and struggle to achieve satisfactory results in
few-shot settings. Furthermore, these techniques are limited to iden-
tifying the types of entities and relations that exist in the dataset,
resulting in subpar performance when encountering unseen relations
or entities, which makes it challenging to meet the needs of practical
applications. Researchers proposed few-shot learning (FSL) (Wang, Yao,
Kwok & Ni, 2020) to solve this problem. Few-shot relational triplet
extraction (FS-RTE) (Cong et al., 2022; Fritzler, Logacheva, & Kretov,
2019; Wang et al., 2022; Yu, Zhang et al., 2020) aims to extract
relational triples from a few labeled instances. Table 1 shows that the
support set comprises two kinds of relations, each with two instances,
and the query set contains one instance that needs to be categorized.
This is a 2-way 2-shot FS-RTE task. The model is trained based on the
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Table 1
An illustration of 2-way 2-shot FS-RTE. The head entity is underlined and the tail entity is in

⁓⁓⁓
wavy

⁓⁓⁓
lines.

Support Set

R1: Born_in Instance1: Kobe Bean Bryant was born in
⁓⁓⁓⁓⁓⁓⁓
Philadelphia.

Instance2: Jay Chou, a famous singer from
⁓⁓⁓⁓
Taiwan, China.

R2: Capital_of Instance1: The government of
⁓⁓⁓⁓
France operates primarily out of Paris, the nation’s core.

Instance2: Tokyo is the capital of
⁓⁓⁓
Japan, serving as the country’s political, economic, and cultural center.

Query Set

R1 or R2 Jack is a pop singer from
⁓⁓⁓⁓

Canada who has released many famous songs.
t

a
t
f
f
w
t
a
s
i
i

Fig. 1. Intra-class and inter-class gaps of FS-RTE. (a) The diversity of some samples in
the same class leads to significant differences. (b) The target class may share features
imilar to those of a non-target class, causing inter-class gaps.

instances in the support set to identify the samples in the query set.
However, the number of instances for each class in the support set

is limited under the few-shot setting. In contrast, there are numerous
unknown instances in the query set that need to be recognized, and
hey contain many different types. The presence of a restricted number
f support set instances poses a challenge in capturing the diverse
eatures of the target instances in the query set, resulting in differences
etween the support features and query features of samples in the same
lass, leading to intra-class gaps. Furthermore, constructing prototypes

from a limited number of instances in the support set makes creating
an extensive representation of categories difficult. The features of the
target class obtained in this way are not prominent enough, resulting
in a considerable ambiguity between the target class and non-target
classes with similar representations, and the distances between samples
of different classes are not significant enough to lead to inter-class
gaps. As shown in Fig. 1, such problems lead to bottlenecks in FS-RTE
xtraction performance.

Existing FS-RTE approaches improve performance by refining the
quality of the prototype (Feng, Xu, Wang, Yang, & Huang, 2024; Fritzler
et al., 2019; Gao, Han, Liu, & Sun, 2019; Han, Cheng, Wan, & Lu, 2023;
Ji et al., 2022), utilizing external knowledge (Chen, Liu, Lin, Han, &
Sun, 2022; Ma et al., 2022; Xiao, Jin, & Hao, 2021), and enhancing
the interaction between support sets and query sets (Wang et al., 2022;
Wen, Xia, Liao, & Tian, 2023). Gao et al. (2019) proposed a hybrid
attention mechanism to enhance the prototype network and alleviate
the impact of noisy samples on the model. Han et al. (2023) used
elation label information to learn more informative and discriminative
epresentations, thereby improving the performance of the model in

handling difficult relations. Wen et al. (2023) used the hidden cate-
gory information in the query set to generate more accurate relation
prototypes to make up for the reliability of the support set prototypes.
Although these methods have promoted the development of FS-RTE
o a certain extent, their designs mainly focus on optimizing sample
epresentation and similarity measurement. They are limited to one-
ided attention to a certain type of technology in the FS-RTE task. It is

better to analyze the root causes that affect the performance of the FS-
TE task from a holistic perspective, and pay in-depth attention to the

intra-class and inter-class gaps that are unique to the FS-RTE task. The
pecific comparative analysis of these models is shown in Table 2. The
ore of this problem is that due to the limited support set data in the
ew-shot learning scenario, the diverse patterns that may appear in the
2 
Table 2
Technical comparison and differences between SQGE and other existing models. ‘‘OP’’
refers to Optimizing prototypes, ‘‘UEK’’ refers to Utilizing external knowledge, ‘‘ETI’’
refers to Enhancing the interaction, and ‘‘ICICG’’ refers to solving Intra-class and inter-
class gaps.

Model OP UEK ETI ICICG

Feng et al. (2024) ✓

Fritzler et al. (2019) ✓

Gao et al. (2019) ✓

Han et al. (2023) ✓ ✓

Ji et al. (2022) ✓

Xiao et al. (2021) ✓

Ma et al. (2022) ✓

Chen et al. (2022) ✓

Wang et al. (2022) ✓

Wen et al. (2023) ✓

Our (SQGE) ✓ ✓ ✓ ✓

query set cannot be effectively captured. In addition, feature differences
between categories often lead to class confusion, affecting the accuracy
of the model.

This study is the first to introduce the problem of intra-class and
inter-class gaps into the research perspective of the FS-RTE task. We
systematically analyze the impact of intra-class and inter-class gaps on
model performance in few-shot learning and propose targeted solutions.
We propose support-query prototype guidance and enhancement few-
shot relation triple extraction method (SQGE). As shown in Fig. 2(a),
raditional methods usually only use support sets to construct proto-

types and use them to match relation instances in query sets. However,
due to the scarcity of support set data, prototypes built solely based
on support sets make it difficult to fully capture the complex and
diverse feature patterns in query sets, which may lead to intra-class
gaps when matching query sets and make it difficult to obtain ideal
extraction results. As shown in Fig. 2(b), SQGE innovatively introduces
 support-query prototype guidance module. Based on traditional pro-
otype construction, it not only relies on the support set but also makes
ull use of the query set’s information to generate a support-query
usion prototype. Through the joint action of this support and query set,
e can capture the consistent basic features of the query object, making

he constructed prototype more representative, thereby improving the
daptability and matching accuracy of the prototype to the query
et features. We hypothesize that incorporating some features of the
nstance itself from the query set can improve its identification, thus
mproving the performance of the model by combining the relevant

features from both the support set and the query set.
Table 3 displays the impact of utilizing the query set prototype for

identifying relational triples in the 5-way 1-shot scenario. It demon-
strates that incorporating varying quantities of samples from the correct
query set to construct the prototype yields significantly superior results
compared to solely utilizing the support set. However, we lack access to
the gold entity labels of the query set during the training process. Thus,
we employ specific gold entity labels and introduce noise to replicate
the query set labels acquired throughout the training phase, which still
results in improved performance compared to the baseline. It can be
seen that using query set instances to construct prototypes can better
represent the features of relevant entities in the query set, which is
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Fig. 2. Comparison of our proposed framework with previous frameworks.
Table 3
Effect of the query set prototype under 5-way 1-shot on FewRel dataset. SP denotes the support prototype, QP denotes the query prototype,
and False denotes the addition of error samples. For example, 1False denotes the addition of an error sample.

Setting SP SP+50%QP SP+33%QP 1False+SP+QP 2False+SP+QP 3False+SP+QP

F1 Score 32.85 53.47 40.94 55.93 52.47 48.37
a
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directly related to the quality of the instances used.
Due to the limited support set data, it is extremely difficult to obtain

sufficient and representative features of the target class. This scarcity
makes it difficult to effectively form the feature space of the target class,
and the features of the non-target class may be highly overlapped, re-
sulting in insufficient inter-class separability. This phenomenon makes
it difficult for the model to accurately distinguish the target class
from other categories when matching the query set. Therefore, to
address this problem, we propose a strategy that combines entity-level
feature enhancement with multi-level contrastive learning. Specifically,
we expand the features of entities in the support set through entity-
level feature enhancement to more comprehensively characterize their
entity types. This method reduces the ambiguity between categories
by increasing the refinement and enrichment of the target class entity
features to form a more representative feature distribution in the
support set. In addition, we further introduce multi-level contrastive
learning to construct positive and negative sample pairs of the target
class from the dual perspectives of the support set and the query set.
In this process, we not only construct contrast pairs in the support
set but also perform feature contrast in the query set to enhance the
distinguishability of the target class in the feature space. Through this
multi-level contrastive learning mechanism, the feature representation
of the target class is effectively enhanced while maintaining a clear
separation from other classes in the feature space so that the model
can show higher accuracy and robustness when dealing with inter-class
gaps in few-shot scenarios.

We summarize the contributions of the paper as follows:

1. To alleviate the intra-class gap, we build the support-query
fusion prototype to capture the consistent basic features of the
query object and appropriately match the query characteristics.

2. To alleviate the inter-class gap, we propose a method that
combines entity-level feature enhancement and multi-level con-
trastive learning to enhance the feature representation of the
target class and separate the feature space of the target class
from other classes.

3. We perform comprehensive experiments on public datasets and
compare the results with state-of-the-art models. Experimental
 r

3 
results show that SQGE significantly improves the F1 score by
0.9%∼16.2% on FewRel, FewNYT and TACRED.

2. Related work

2.1. Relational triple extraction

Relational triple extraction (Sarawagi et al., 2008) is a fundamental
task in the construction process of knowledge graphs (Hogan et al.,
2021), which extracts the entities and relations present in a sentence.
Early research focused on pipeline-based methods, divided into named
entity recognition (Chiu & Nichols, 2016; Lample, Ballesteros, Sub-
ramanian, Kawakami, & Dyer, 2016; Mansouri, Affendey, & Mamat,
2008) and relation extraction (Zeng, Liu, Lai, Zhou, & Zhao, 2014; Zhou
et al., 2016). The technique is relatively simple but has problems such
s error propagation (Tan, Zhao, Wang, & Xiao, 2019; Wang, Yu et al.,

2020). To alleviate the issues existing in pipeline-based methods, some
works proposed joint extraction models (Zhao, Yan, Cao, & Li, 2021).

TE methods based on supervised learning (Ning, Yang, Sun, Wang, &
Lin, 2023; Shang et al., 2022; Wang, Yu et al., 2020; Wei et al., 2020;
Zheng et al., 2021) have shown satisfactory performance but still have
significant limitations. Supervised learning is typically labor-intensive
in a specific domain due to the need for a substantial amount of labeled
data. Therefore, researchers have started to investigate FS-RTE.

2.2. Few-shot learning

Few-Shot Learning (FSL) (Wang, Yao, Kwok & Ni, 2020) aims to
train a model with only a few labeled training samples, which can
predict new tasks well. Early research in FSL focused on computer
vision, such as image classification (Tian, Wang, Krishnan, Tenenbaum,
 Isola, 2020), and subsequently expanded to encompass the field of

natural language processing (Sun, Sun, Zhou, & Lv, 2019). There are
three main categories in existing FSL approaches. The first is based on
transfer learning (Zhuang et al., 2020), where knowledge learned from
ne task is transferred to another related or different task to improve
erformance on the target task. The second approach is based on meta-
earning (Hospedales, Antoniou, Micaelli, & Storkey, 2021), which
apidly updates the model through meta-learning optimization using
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Fig. 3. Overview of FS-RTE framework with SQGE.
limited samples. The third approach relies on metric learning (Snell,
Swersky, & Zemel, 2017), which employs the similarity measure to
calculate the similarity values between the query and support features.

2.3. Few-shot relational triple extraction

Few-shot relational triple extraction identifies relational triples by
learning from small amounts of labeled data. Similar to the RTE method
based on supervised learning, it can also be performed in two stages,
which are few-shot named entity identification (FS-NER) (Das, Katiyar,
Passonneau, & Zhang, 2022; Feng et al., 2024; Huang et al., 2021; Ji
et al., 2022; Ma et al., 2022; Tian et al., 2020) and few-shot relation
extraction (FS-RE) (Dong et al., 2020; Gao et al., 2019; Han et al.,
2023; Wen et al., 2023; Xiao et al., 2021; Ye & Ling, 2019). These
approaches provide ideas for FS-RTE solutions. However, they only
consider one task and treat each as an individual model. This approach
does not address the underlying challenges faced by FS-RTE. As a
result, researchers suggested utilizing a joint extraction strategy for
conducting FS-RTE (Cong et al., 2022; Wang et al., 2022; Yu, Zhang
et al., 2020).

Yu, Zhang et al. (2020) first proposed using a model to simulta-
neously extract entities and relations in sentences, but there are some
limitations. Using CRF directly for NER in the FS-RTE is challenging
since there is insufficient labeled data to reach the desired perfor-
mance. Furthermore, the extracted incorrect entities will influence the
results of relation extraction. Cong et al. (2022) employed a relation-
guided methodology to perform triple extraction. They created relation
prototypes to initially detect relations in sentences and subsequently
developed entity prototypes based on these relations to identify en-
tities in sentences. Wang et al. (2022) introduce a translation-based
graph reasoning network that combines the translation model with
graph reasoning, significantly advantages handling tasks with complex
dependencies. In their study, He, Song, Cheng, and Xu (2022) used
the nearest neighbor matching (Dang, Deng, Yang, Wei, & Huang,
2021) method to evaluate the semantic similarity of words to obtain
relation triplets in sentences. Fei, Zeng, Zhao, Li, and Xiao (2022)
introduced a new perspective transfer network that effectively utilizes
global information for addressing FS-RTE. By thoroughly mining the
local and global information in the phrase, it extracts relation triples
based on three viewpoints: relation, entity, and triple perspectives.
4 
Jiang, Zhu, and He (2023) propose a token-level FS-RTE (TLSM), which
is a method based on semantic similarity information. In order to
solve the problem of error propagation, RCTE (Liao, Lu, & Guo, 2024)
proposes a relation candidate-guided FS-RTE.

The joint extraction paradigm is significantly more challenging than
the pipeline method due to the simultaneous consideration of entity
and relation representations. This becomes particularly problematic
in few-shot scenarios, necessitating the exploration of more effective
extraction strategies. Furthermore, while these approaches have had
some success in optimizing matching methods and prototype refine-
ment efforts, none of them considers intra-class and inter-class gaps in
FS-RTE.

3. Problem definition

Give a sentence 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑖}𝑚𝑖=1 and relation set 𝑅 = {𝑟1, 𝑟2,
… , 𝑟𝑗}𝑘𝑗=1, RTE model is aim to detect relational triples 𝑇 =

{

⟨ℎ𝑖, 𝑟𝑗 , 𝑡𝑖⟩
∣ ℎ𝑖, 𝑡𝑖 ∈ 𝐸 , 𝑟𝑗 ∈ 𝑅

}

, where 𝐸 denotes the set of entities, ℎ𝑖 and 𝑡𝑖 denote
the head and tail entities, respectively. We split all instances into two
datasets, 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡. It is important to mention that the relation
sets 𝑅𝑡𝑟𝑎𝑖𝑛 and 𝑅𝑡𝑒𝑠𝑡 do not overlap.

Following the previous meta-learning paradigm, we adopt the
‘‘episode’’ training strategy (Yu, Ji, Han & Zhang, 2020). 𝐷𝑡𝑟𝑎𝑖𝑛 and
𝐷𝑡𝑒𝑠𝑡 are divided into {𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑞 𝑢𝑒𝑟𝑦
𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑡𝑒𝑠𝑡 , 𝐷𝑞 𝑢𝑒𝑟𝑦
𝑡𝑒𝑠𝑡 }. In the training

episode, we construct the train support set 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑡𝑟𝑎𝑖𝑛 = {(𝑠𝑖, ⟨ℎ𝑖, 𝑟𝑖, 𝑡𝑖⟩|𝑟𝑖 ∈

𝑅𝑡𝑟𝑎𝑖𝑛, ℎ𝑖, 𝑡𝑖 ∈ 𝐸𝑡𝑟𝑎𝑖𝑛)}𝑁 𝐾
𝑖=1 and train query set 𝐷𝑞 𝑢𝑒𝑟𝑦

𝑡𝑟𝑎𝑖𝑛 = {(𝑠𝑖, ⟨ℎ𝑖, 𝑟𝑖, 𝑡𝑖⟩ ∣ 𝑟𝑖 ∈
𝑅𝑞 𝑢𝑒𝑟𝑦, ℎ𝑖, 𝑡𝑖 ∈ 𝐸𝑞 𝑢𝑒𝑟𝑦)}𝑁 𝐺

𝑖=1 by randomly selecting 𝑁 classes with 𝐾 and 𝐺
instances for each class. 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑡𝑒𝑠𝑡 and 𝐷𝑞 𝑢𝑒𝑟𝑦
𝑡𝑒𝑠𝑡 are constructed in the same

way. We refer to such an FSL problem as the 𝑁-way 𝐾-shot problem.

4. Methodology

The model consists of three core modules, which are the entity-
level feature enhancement module, the multi-level comparative learn-
ing module and the support-query prototype guidance module. The
entity-level feature enhancement and multi-level comparison learning
modules are primarily utilized to resolve the inter-class gap. They
enhance the depiction of the target entity category and distinguish
it from the class that shares similar characteristics. The support for
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Fig. 4. Entity-level feature enhancement (ELFE) in sentences.

the query prototype boot module focuses on the intra-class gap. It
matches the query properties appropriately by capturing the essential
characteristics of the support-query object consistency, reducing the
differences between the attributes within a class.

Fig. 3 show the comprehensive structure of SQGE. The input to
he model consists of the support set and query set data, which are

processed by an encoder to extract features. Among them, in the entity-
evel feature enhancement module, we use support to concentrate on
he same type of entity instances to enhance the representation of

the current entity type. The specific method randomly selects entities
of the same kind from the support set to replace the entities in the
sentence, forming a new sequence. In addition, positive and negative
instances of the target entity class are constructed through contrastive
learning modules. Entities of the same type are regarded as positive
example pairs, other entities and non-entities are considered negative
example pairs. This method can separate the feature space of the target
class from other classes while enhancing the representation of the same
target entity type. The entity-enhanced support set data is utilized to
construct a support prototype. This support prototype is then employed
to forecast the query set, resulting in the acquisition of the query set
initial mask. Subsequently, the query prototype is constructed using the
query set and query mask. We combine the two types of prototypes to
form the final prototype and identify the triples existing in the sentence.
By incorporating relations into the entity labels, our task is to construct
representations of the entity prototypes that directly specify the head
and tail entities associated with the respective relations, resulting in
triples.

4.1. Entity-level feature enhancement module

Prototype network-based methods only use small data for prototype
onstruction under few-shot. However, the characteristics of a few
ntities make it difficult to represent the entity type. The prototype
onstructed in this way has large deviations and is inaccurate. A large
mount of data based on the open domain is proposed to be obtained

in certain studies, but getting more label data is expensive and goes
gainst the initial goals of few-shot learning. While in the support set,
here are some other instances for a type of data, and we can use
hese instances for feature enhancement. Based on this, we propose an
ntity-level feature enhancement method to improve entity represen-
ation in sentences. The support set has multiple sentence instances
nder each type of relation. Each sentence contains both head and
ail entities. Taking a 5-way 1-shot as an example, the input of each
pisode includes five sentences, each of which belongs to a different
elation category. Given the support set and a query set as input, we
xpand the support set of the original input using an entity-level feature
nhancement-based approach. As shown in Fig. 4.

We construct the relation-entity dictionary based on the support
set. For example, under the relation ‘‘the capital of ’’, the sentence
‘‘Washington is the capital of the United States.’’ contains the head entity
‘‘Washington’’ and the tail entity ‘‘United States’’. We keep the backbone
f the sentence unchanged and randomly replace the head and tail enti-
ies in the sentence. The replaced entities are other entities of the same
ength under the same relation to form a new sequence. To prevent data
leakage, the entities replaced under each episode do not include entities

5 
that appear in the query set. When the entity feature enhancement
is completed, we use the BERT (Kenton & Toutanova, 2019) encoder
to extract features from the data to obtain the support set features
𝐹𝑠 = {𝑤𝑠

1, 𝑤𝑠
2,… , 𝑤𝑠

𝑛} and query set features 𝐹𝑞 = {𝑤𝑞
1, 𝑤

𝑞
2,… , 𝑤𝑞

𝑛}
respectively. The formula is as follows:

𝑆𝑎 = 𝐸 𝑛𝑡𝑖𝑡𝑦𝐴𝑢𝑔(𝑆) (1)

𝐹𝑠, 𝐹𝑞 = 𝐵 𝐸 𝑅𝑇 ({𝑠1, 𝑠2,… , 𝑠𝑎}, {𝑞1, 𝑞2,… , 𝑞𝑛}) (2)

where 𝐹𝑠 ∈
𝑁×𝑘𝑎𝑢𝑔×𝑑ℎ and 𝐹𝑞 ∈ 𝑁×1×𝑑ℎ . 𝑆𝑎 is the enhanced support set.

𝑁 is the relation category. 𝑘𝑎𝑢𝑔 represents the number of sentences in
each relation category after entity-level feature enhancement. 𝑑ℎ is the
feature dimension, 𝐸 𝑛𝑡𝑖𝑡𝑦𝐴𝑢𝑔 represents the method of entity feature
enhancement.

4.2. Support-query prototype guidance module

Prototype network-based approaches primarily utilize the data in
the support set to generate prototypes. The initial prototypes are ob-
ained by averaging relevant instances in the support set and then

matched with query features to make predictions. This approach is
both intuitive and successful up to a certain degree. The prototype
created by averaging many instances captures the shared characteristics
among the samples. However, only a few instances are often selected as
support sets during model training. The limited samples in the support
set are insufficient to represent the semantic class of the target object
in the complete query set, leading to the intra-class gap. Therefore,
we propose a support-query prototype guidance module to fuse the
prototypes and mitigate the problem of the intra-class gap between
support and query entities in the same class to accommodate target
recognition better.

Given the support set feature 𝐹𝑠 and the query set feature 𝐹𝑞 ,
e obtain the entity vector 𝐸𝑠 = {𝑒𝑠1, 𝑒𝑠2,… , 𝑒𝑠𝑘𝑎𝑢𝑔 } of the support set
ased on the support entity mask 𝑀𝑠. Then calculate the support entity
rototypes of each episode and obtain the support entity prototype set
s, which is formulated by:

𝑃
𝑐𝑗
𝑠 = 1

𝑘𝑎𝑢𝑔

𝑘𝑎𝑢𝑔
∑

𝑖=1
𝑒𝑠𝑖 , 𝑗 = 1, 2,… , 2𝑁 + 1 (3)

𝑃s = {𝑃 𝑐1
𝑠 , 𝑃 𝑐2

𝑠 ,… , 𝑃 𝑐2𝑁+1
𝑠 } (4)

where 𝑘𝑎𝑢𝑔 is the number of sentences in each relation category after
entity-level feature enhancement, 𝑐𝑖 represents the category of the 𝑖th
prototype. Since our model requires the construction of head and tail
entity prototypes separately, there are 2𝑁 entity prototypes and one
other class prototype for 𝑁 class relations.

After obtaining the support set entity prototype, we can construct
the query prototype 𝑃𝑞 in the same way. However, during the training
process, the query set’s entity labels are unavailable. Therefore, we
use a predicted query entity mask 𝑀𝑞 to aggregate query features.
The construction technique involves utilizing the support set entity
rototype 𝑃𝑠 to match with the query set sentence 𝐹𝑞 to get the query
ntity mask 𝑀𝑞 . Then the query set sentences 𝐹𝑞 and query entity masks
𝑞 can be aggregated to obtain the query entity prototype 𝑃𝑞 . The

ormula is as follows:

𝑀𝑞 = Cos𝑖𝑛𝑒(P𝑠,F𝑞) (5)

𝑀𝑞 = I(M𝑞>𝜏) (6)

P𝑞 = 𝐴gg r egat or (F𝑞 ,M̃𝑞) (7)

where Cos𝑖𝑛𝑒 is similarity function, I is indicator function. The mask
hreshold 𝜏 is used to control the range of query feature sampling.

We choose the optimal experimental results to set it, 𝐴gg r egat or is
ggregator function.

The query set entity prototype contains the characteristics of the
query set. Still, the query entity mask is predicted based on the support
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set entity prototype, which is not entirely accurate. Therefore, to form
ur final entity prototype representation, we use a weighted approach

to fuse the support set’s entity prototypes with the query set’s entity
prototypes. To get the final matching prediction, we use a two-layer
Convolutional Neural Network (CNN) (LeCun et al., 1989) along with
 subsequent linear layer to compute the similarity score between the
rototype and query characteristics. The formula is as follows:

P = 𝛼1𝑃𝑠 + 𝛼2𝑃𝑞 (8)

𝑀𝑟𝑒𝑠𝑢𝑙 𝑡 = 𝐿𝑖𝑛(𝐶 𝑜𝑛𝑣([𝑃 ;𝐹𝑞 ;𝑃 − 𝐹𝑞 ;𝑃 + 𝐹𝑞 ;𝑃 ⊗ 𝐹𝑞])) (9)

where 𝛼1 and 𝛼2 is weighting factor, 𝐿𝑖𝑛 and 𝐶 𝑜𝑛𝑣 means the linear
function and CNN, ⊗ means element-wise product, we set 𝛼1 = 𝛼2 = 1.

4.3. Multi-level contrastive learning module

We introduce a support and query-oriented multi-level comparative
learning approach to mitigate inter-class gaps further. It builds positive
and negative instances to compare and learn more about the different
representations between different entity classes. Our contrastive learn-
ng loss is constructed using a supervised contrastive learning approach,
hich utilizes the label information of the data to build positive and
egative pairs. The support-level contrastive learning (SLCL) specific
onstruction process is as follows: at the support set level, for entity
𝑤𝑘 in the support set under the relation 𝑖, we take the entities of the
same class in 𝑠𝑖 as positive pairs 𝑃𝑠(𝑖), and the other entities of different
classes as well as the non-entity instances as negative examples 𝑁𝑠(𝑖).
Contrastive learning seeks to minimize the distance between examples
of the same class while maximizing the distance between instances of
different classes. In this way, we increase the discriminative power of
the support set instances and generate more compact clusters for better
prototypes. The SLCL loss is computed as follows:

𝑆 𝐿𝐶 𝐿 =
𝑁 𝐾
∑

𝑖=1
𝑆 𝐿𝐶 𝐿𝑖

(10)

𝑆 𝐿𝐶 𝐿𝑖
= − log

exp(𝑤𝑠
𝑖 ⋅𝑤

𝑠
𝑗∕ )

∑𝑁 𝐾
𝑚=1 I𝑚≠𝑖 exp(𝑤

𝑠
𝑖 ⋅𝑤𝑠

𝑚∕ )
(11)

where 𝑤𝑠
𝑖 and 𝑤𝑠

𝑗 represent the word feature vector representation in
he support set, 𝑗 means the same type of instance as 𝑖, and 𝑚 means

not the same type of instance as 𝑖.  is a temperature factor, 𝑁 and 𝐾
represent the specific settings in 𝑁-way 𝐾-shot.

At the query set level, for the set of entity prototypes 𝑃 under the
current episode, we use each prototype as an anchor point and consider
query set entity instances 𝑒𝑞𝑘 of the same type as positive pairs 𝑃𝑞(𝑖) and
uery instances of different types as negative pairs 𝑁𝑞(𝑖). The purpose

of query-level contrastive learning (QLCL) is to optimize the prototypes
based on the entity labels of the query set. The QLCL loss calculation
formula is as follows:

𝑄𝐿𝐶 𝐿 =
∑

𝑐∈𝑃

𝑁 𝐺
∑

𝑖=1
𝑄𝐿𝐶 𝐿𝑖

𝑐
(12)

𝑄𝐿𝐶 𝐿𝑖
𝑐
= − log exp(𝑝𝑐 ⋅ 𝑒

𝑞
𝑖 ∕ )

∑2𝑁 𝐺
𝑚=1,𝑚≠𝑖 exp(𝑝𝑐 ⋅ 𝑒

𝑞
𝑚∕ )

(13)

𝐶 𝐿 = 𝑆 𝐿𝐶 𝐿 + 𝑄𝐿𝐶 𝐿 (14)

where 𝑒𝑞𝑖 and 𝑒𝑞𝑚 represent the word feature vector representation in the
query set, 𝑚 means not the same type of instance as 𝑖.  is a temperature
factor, 𝑁 represent the category of relation and 𝐺 is the number of
uery set instances under relation.

The loss of our model comprises two components, specifically con-
trastive learning loss and matching loss. The loss function of the
training process is as follows:

𝑀 𝑎𝑡𝑐 ℎ = 𝐶 𝐸 (𝑀𝑅𝑒𝑠𝑢𝑙 𝑡, 𝑀𝑇 𝑟𝑢𝑒) (15)

 = 𝐶 𝐿 + 𝑀 𝑎𝑡𝑐 ℎ (16)

where 𝐶 𝐸 is the binary cross-entropy loss function, 𝑀𝑅𝑒𝑠𝑢𝑙 𝑡 is the
redict result and 𝑀 is the gold entity label.
𝑇 𝑟𝑢𝑒

6 
4.4. Model training process

We describe the algorithmic flow in Algorithm 1. For the input of
the support set, we first perform data enhancement on the support
set according to the entity-level feature enhancement strategy and
then encode them. Based on the data-augmented support set, we build
the support entity prototype and obtain the predicted query entity
mask to generate the query prototype similarly. Finally, the support
and query prototypes are integrated to form the final prototype. We
calculate the distance between the prototype and the query features to
get the matching prediction. In this process, we compute the support-
level contrastive learning loss using the original support set and the
query-level contrastive loss using the prototype and query set entity
instances.

Algorithm 1 The training process of SQGE.

Input: 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑡𝑟𝑎𝑖𝑛 = {(𝑠𝑖, < ℎ𝑖, 𝑟𝑖, 𝑡𝑖 > |𝑟𝑖 ∈ 𝑅𝑡𝑟𝑎𝑖𝑛, ℎ𝑖, 𝑡𝑖 ∈ 𝐸𝑡𝑟𝑎𝑖𝑛)}𝑁 𝐾

𝑖=1 ;
𝐷𝑞 𝑢𝑒𝑟𝑦

𝑡𝑟𝑎𝑖𝑛 = {(𝑠𝑖, < ℎ𝑖, 𝑟𝑖, 𝑡𝑖 > |𝑟𝑖 ∈ 𝑅𝑞 𝑢𝑒𝑟𝑦, ℎ𝑖, 𝑡𝑖 ∈ 𝐸𝑞 𝑢𝑒𝑟𝑦)}𝑁 𝐺
𝑖=1

Output: 𝑇 = {< ℎ𝑖, 𝑟𝑗 , 𝑡𝑖 > |ℎ𝑖, 𝑡𝑖 ∈ 𝐸 , 𝑟𝑗 ∈ 𝑅}
1: Obtain enhanced support set 𝑆𝑎 from 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑡𝑟𝑎𝑖𝑛 by Equation (1) in
ELFE module;

2: Encode the input by Equation (2), obtain supports set features 𝐹𝑠
and query set features 𝐹𝑞 ;

3: for episode in episodes do
4: for 𝑖 = 1 → 𝑁 do
5: Build support prototypes 𝑃𝑠 by Equation (3) and (4);
6: Calculate query masks 𝑀𝑞 by Equation (5);
7: Build query prototypes 𝑃𝑞 by Equation (6) and (7);
8: Fusion of support and query prototype to obtain final

prototype 𝑃 by Equation (8);
9: end for

10: Calculate query prediction loss 𝑚𝑎𝑡𝑐 ℎ by Equation (15);
11: Construct positive and negative sample pairs;
12: Compute multi-level contrastive loss 𝐶 𝐿 by Equation (14);
13: Calculate  for this episode by Equation (16);
14: end for
15: Let  to be minimized in the next episode.

5. Experiment

5.1. Datasets

We mainly use the following datasets to evaluate the model. Table 4
displays comprehensive statistics of the datasets. The FewRel (Han
et al., 2018) is highly prevalent in FS-RTE, comprising 100 relations
and 70,000 sentences. To ensure a fair comparison with previous works,
we follow the setting of Cong et al. (2022). Note that the relations
classes in these datasets are independent. Based on the work (Fei et al.,
2022), we constructed the FewNYT dataset. NYT dataset (Riedel, Yao, &
McCallum, 2010) is a commonly used dataset for evaluating supervised
RTE. It contains 24 relations, and there may be multiple relations in
each sentence. We preprocessed the dataset according to the number of
relations and instances to form a dataset containing 16 relations, which
is used as the testing set. The training set and dev set are the same
s FewRel. TACRED (Zhang, Zhong, Chen, Angeli, & Manning, 2017)

is a large-scale human-annotated relation extraction dataset. Its data
mainly comes from newswires and web texts used in the NIST TAC KBP
slot-filling evaluation. We organized the dataset and constructed an FS-
RTE dataset, in which the training set contains 15 types of relations,
and the test set and dev set each contain 11 types of relations.
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Table 4
Information statistics in FewRel, FewNYT and TACRED datasets.

Category FewRel FewNYT TACRED

Dev Test Train Dev Test Train Dev Test Train

Relation 15 15 50 15 16 50 11 11 15
Entity 21,000 21,000 70,000 21,000 1,600 70,000 742 1238 24846
Sentence 10,500 10,500 35,000 10,500 800 35,000 371 619 12423
b
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5.2. Experimental settings

The experimental conditions we used closely mirror those outlined
n work (Gao et al., 2024). During the training method, we use the
dam (Kingma, 2014) optimizer with an initial learning rate of 1e-5
nd a weight decay of 1e-3. We use the ‘‘episode’’ training methodology

to train the model, whereby each training ‘‘episode’’ comprises 𝑁 × 𝐾
support instances and one query instance. The number of training
iterations is set to 30,000, the number of test iterations is set to 3000,
nd the number of validation iterations is set to 500. We determine
everal threshold parameters in the model based on the experimental
esults reported in Section 5.4. The model evaluation approach follows

previous research by using F1-score, precision, and recall to evaluate
the model’s performance.

5.3. Experimental results

We compared our model with the following baseline models. (1)
CasRel (Wei et al., 2020): An approach for extracting overlapping
triplets using supervised learning. (2) MatchNet (Vinyals, Blundell,
illicrap, Wierstra, et al., 2016): It is founded on the concept of metric
earning and employs external memory to augment the network, en-
ancing its learning capacity. (3) Proto Snell et al. (2017): A approach
or few-shot learning utilizing prototype networks. (4) FS-GNN (Garcia

& Bruna, 2018): It transforms few-shot learning into a supervised
message passing task and trains it using a graph neural network. (5)
MPE (Yu, Zhang et al., 2020): It introduces a unique multi-prototype
embedding network to address the issue of few-shot relation triple
extraction. By combining text representation learning and knowledge
graph constraints, the model shows excellent generalization ability with
a small amount of labeled data. (6) MLMAN (Ye & Ling, 2019): An
approach enhances the conventional few-shot relation classification
prototype network by iteratively encoding query instances and class
prototypes using multi-level matching and aggregation. (7) NNM (He
et al., 2022): An approach for extracting connection triplets from the
text that combines few-shot learning methods with nearest-neighbor

atching. (8) TGIN (Wang et al., 2022): A translation-based graph rea-
soning network combines the translation model with graph reasoning,
significantly advantages handling tasks with complex dependencies. (9)
TN (Fei et al., 2022): It proposes a novel perspective transfer network,

which verifies the extracted elements at local and global levels and ef-
ectively handles more realistic and challenging few-shot RTE scenarios
y converting between perspectives of relations, entities, and triples.
10) RelATE (Cong et al., 2022): It presents a ‘‘Relation-then-Entity’’
ask decomposition technique that first identifies the relations in the

phrase using a double-layer attention mechanism, and then utilizes
annotated samples of the identified relations to extract the matching
entities. (11) TLSM (Jiang et al., 2023), an FS-RTE method based on
token-level similarity of the entity label. (12) RCTE (Liao et al., 2024),
a novel relation candidate-guided few-shot relational Triple Extraction
approach.

Table 5 compares the F1-score results of SQGE with all baseline
models on the FewRel dataset. Our proposed method SQGE achieved
the best results. The experimental results of CasRel demonstrate that
he model constructed using the conventional supervised learning
aradigm cannot address the RTE task under the few-shot. MPE per-

forms relation triplet extraction in stages. It uses a conventional entity

extractor to identify entities in sentences. Under a small number of t

7 
training instances, it is difficult to obtain an ideal entity recognition
effect, which further affects the subsequent triplet extraction effect.

PTN, RelATE, RCTE and TLSM are the latest and most effective
aseline models. We will focus on comparing these methods. On 5-way
-shot, SQGE improves TLSM and RCTE by 1.3% and 2.1% respectively.
n 10-way 10-shot, SQGE improves TLSM and RCTE by 0.9% and 3.3%

respectively. However, TLSM and RCTE have only been experimented
with in these two settings, so a more detailed comparison cannot be

ade. On 5-way 5-shot, 10-way 5-shot, and 10-way 10-shot, SQGE
improved by 9.5%, 6.8%, and 10.2%, respectively, compared with PTN.
On 5-way 1-shot and 10-way 1-shot, SQGE improved by 8.5% and
5.9%, respectively, compared with PTN. Compared to RelATE, SQGE
showed improvements of 7.2%, 5.6%, and 5.5% on 5-way 5-shot, 10-

ay 5-shot, and 10-way 10-shot tasks, respectively. On 5-way 1-shot
and 10-way 1-shot, SQGE is 9.8% and 10.0% higher than RelATE, re-
spectively. RCTE proposes a relation candidate-guided few shot relation
riple extraction method. It uses a gate mechanism and a beam search
ramework to optimize the error propagation problem in FS-RTE. How-
ver, it is still based on the relation-then-entity paradigm and cannot
undamentally solve this problem. SQGE unifies entity and relation
xtraction and directly constructs relation-entity prototypes, which can
ffectively avoid the error propagation problem in the relation-then-
ntity paradigm. TLSM proposes an entity tag Token-level similarity
valuation method, which uses the semantic similarity information
etween tokens in a small number of annotated samples and unseen
amples to improve the accuracy of entity extraction, thereby improv-
ng the overall performance of relational triple extraction. However, the
bove two methods only predict triples in the query set based on the
nformation of the support set, without considering the differences be-
ween the support set and the query set, and thus lack unified modeling
f intra-class and inter-class features. PTN uses a perspective conversion
etwork to create relation and entity prototypes, convert between
elation, entity, and triple views, and fully use sentence local and global
nformation. RelATE identifies relations present in sentences based on
elational prototypes. They are all based on two-stage extraction of
elational triples, which results in error propagation and affects the
erformance of the final extraction of relational triples. Furthermore,
one of these methods consider the intra-class and inter-class gaps in
he FS-RTE, whereas our proposed method can effectively solve these
roblems.

Table 6 gives the experimental results of the FewNYT dataset. Since
nly a few models use this dataset, we only list the available baselines.
QGE still achieves the best performance, especially in the 5-way 1-shot
nd 10-way 1-shot scenarios. Table 7 shows the experimental results of

the TACRED dataset. To compare with the previous baseline, we added
two additional scenarios: 3-way 1-shot and 3-way 5-shot. Since most
of the data is manually annotated, TACRED is of higher quality than
the other two datasets, and SQGE still maintains a huge performance
advantage.

To analyze the performance of the model in each subtask, more
pecifically, four scenarios were selected to test the entity, relation,
nd triplet extraction performance of the model. From Table 8, we can
ee that the performance of relation extraction is significantly better

than that of named entity recognition. Named entity recognition is
more complicated than relation extraction in few-shot. SQGE has no
advantage in single entity and relation extraction compared to other
aselines, especially in entity recognition. We employ a joint approach

o modeling the FS-RTE, utilizing a single-stage extraction architecture.
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Table 5
The F1 scores of the compared model on the FewRel dataset. Bold indicates the best
results, and underlined indicates the second-best results.

Model 5W1S 5W5S 10W1S 10W5S 10W10S

CasRel (Wei et al., 2020) – 2.1 – – 2.0
FS-GNN (Garcia & Bruna, 2018) 17.8 24.5 11.4 – 16.1
MatchNet (Vinyals et al., 2016) 15.4 18.7 8.2 – 16.3
MPE (Yu, Zhang et al., 2020) – 23.3 – – 12.1
Proto (Snell et al., 2017) 15.9 21.2 10.4 – 15.4
MLMAN (Ye & Ling, 2019) 20.4 28.5 15.3 – 19.2
TGIN (Wang et al., 2022) 24.0 32.3 17.3 – 22.8
NNM (He et al., 2022) – 32.1 – – 25.0
RelATE (Cong et al., 2022) 28.7 42.3 20.3 34.8 40.9
PTN (Fei et al., 2022) 30.0 40.0 25.3 33.6 36.2
RCTE (Liao et al., 2024) – 45.3 – – 41.2
TLSM (Jiang et al., 2023) – 48.2 – – 45.5

SQGE (Ours) 38.5 49.5 31.2 40.4 46.4
Improved +8.5* +1.3* +5.9* +5.6* +0.9*

Table 6
The F1 scores of the compared model on the FewNYT dataset. Bold indicates the best
results, and underlined indicates the second-best results.

Model 5W1S 5W5S 10W1S 10W5S 10W10S

Proto (Snell et al., 2017) 20.6 30.8 13.5 22.5 –
PTN (Fei et al., 2022) 33.3 42.0 26.7 34.2 –
RelATE (Cong et al., 2022) 27.1 46.0 19.4 35.8 38.9

SQGE (Ours) 38.2 48.1 30.1 39.1 43.4
Improved +11.1* +2.1* +10.7* +3.3* +4.5*

Table 7
The F1 scores of the compared model on the TACRED dataset. Bold indicates the best
results, and underlined indicates the second-best results.

Model 5W1S 5W5S 3W1S 3W5S

MatchNet (Vinyals et al., 2016) 11.8 17.7 19.9 23.8
Proto (Snell et al., 2017) 13.2 19.2 20.6 25.3
MLMAN (Ye & Ling, 2019) 18.4 25.0 27.4 28.9
TGIN (Wang et al., 2022) 20.4 27.7 30.4 31.2

SQGE (Ours) 36.6 42.4 39.1 43.2
Improved +16.2* +14.7* +8.7* +12.0*

It encodes the relation within the entity label and immediately extracts
he head and tail entities. This approach enhances the complexity of
he entity extraction process while also preventing the propagation
f errors. Therefore, our relation triplet extraction results are similar
o entity recognition results. PTN and RelATE employ a two-stage
xtraction scheme for other baselines, wherein relation extraction is

carried out first, followed by entity recognition. This decomposed
xtraction scheme divides the relational triplet extraction, and each

task is relatively independent. Therefore, the performance of a single
task will be better, but the model has an error propagation problem,
which affects the final relational triple extraction performance.

We selected some recent baselines to analyze the time complexity
of the model, as shown in Table 9. We divide the time complexity
f the model into two parts for calculation, namely the encoding
art and the prototype construction part. The encoding part mainly
alculates the time complexity generated when encoding each model.
he time complexity of the prototype construction part refers to the
ime complexity generated by the model to build entity or relation
rototypes, which is usually related to the number of relation categories
nd the prototype construction method. SQGE has an advantage in the
ime complexity of the prototype calculation part, mainly since SQGE
ses a unified prototype construction method and does not need to
ivide entity and relation prototypes, because it can greatly reduce the
ime complexity. In the encoding calculation part, the time complexity
f SQGE mainly depends on the size of 𝑘, which is consistent with our
8 
conclusion in Table 10. The spatial complexity of the model is mainly
determined by the encoding calculation.

To further analyze the working efficiency of our model, we counted
the training time, inference time, and memory occupation of the model
under 5-way 1-shot and 5-way 5-shot conditions in Table 10 and
compared them with the baseline model RelATE. There are two main
easons for choosing this baseline. First, as an open-source baseline,
elATE can be easily used for comparative experiments. Second, Re-

ATE uses the relational decomposition method for FS-RTE, showing
igh efficiency. All experiments were conducted under the same set-
ings as the baseline, including 40,000 training episodes and 3000
nference episodes, and the device was a 3090 GPU. SQGE has a large
ifference in time and space overhead, especially in the 5-way 5-shot
cenario. Through specific ablation experiments, we found that the
erformance limitations of SQGE mainly stem from the entity-level
eature enhancement module. This module increases the number of

samples under each category, resulting in an increase in model perfor-
mance overhead, which is difficult to avoid. However, we can achieve
a balance between performance and overhead by adjusting the number
of boosting samples, which is set to 5 for the current experiment. When
this module is removed, the training time and memory occupation of
SQGE are comparable to the baseline RelATE, and the inference time is
significantly reduced, while the F1-score of the model is still better than
the baseline. This shows that other modules of SQGE are still highly
competitive and can effectively improve the performance of the model
while maintaining model efficiency.

5.4. Parameters sensitivity analysis

We provide a comprehensive explanation of the model parameter
settings in Section 5.2. However, we determine the selection through
experimental results for some crucial hyperparameters. Fig. 5(a) shows
that we train and test the model by setting different mask thresholds.
When the mask threshold is set to 1, the support-query prototype
guidance module is not used. The lower the mask threshold is set,
the higher the model recall, the more correct instances the prototype
guidance module can use, and the more incorrect samples it produces,
which needs to be balanced. The model exhibits its lowest efficacy
when the mask threshold is set to 0.9, and eliminating the module could
be more advantageous. We analyze that the reason may be that the
mask threshold is set too high, which excludes many correct samples,
leaving less knowledge available to the model and thus producing
negative effects. As shown in Fig. 5(b), we conducted experiments
under different parameter settings and in Eq. (8), which denotes the
roportion of support set prototypes and the proportion of query set

prototypes. The experiments show that the best results are achieved
when using prototypes that are a fusion of complete support set and
query set prototypes.

In addition, we also analyzed and experimented with the parameters
in the entity-level feature enhancement module, as shown in Table 11.
By setting different numbers of enhanced entity and observing their
orresponding F1 score, training time, and memory occupation, we

selected the most appropriate parameter values. As the number of
entities in the entity-level feature enhancement module increases, the
model’s training time, memory occupation, and F1 score also increase
synchronously. When 𝑘 is set to 5, a relatively balanced result can
be obtained. When k is greater than 5, the performance of the model
increases very slowly, but the training time and memory consumption
still maintain a high growth rate. This also shows that when the number
of entities reaches a certain level, the prototype can be constructed
relatively well, and continuing to add entities will not provide more
help. This conclusion is consistent with the conclusion obtained in the

ablation experiment.
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Table 8
Comparison of model F1 scores for entities, relations, and triples on the FewRel dataset. Bold denotes the best result, whereas underlined represents the second-best result.

Model 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 10-shot

Relation Entity Triple Relation Entity Triple Relation Entity Triple Relation Entity Triple

FS-GNN (Garcia & Bruna, 2018) 78.4 21.6 17.8 88.4 26.0 24.5 66.9 15.7 11.4 77.7 20.5 16.1
MatchNet (Vinyals et al., 2016) 75.8 18.7 15.4 84.6 20.7 18.7 59.4 12.5 8.2 77.8 20.0 16.3
MPE (Yu, Zhang et al., 2020) – – – 93.8 25.0 23.3 – – – 84.6 14.9 12.1
Proto (Snell et al., 2017) 77.6 19.4 15.9 87.4 25.1 21.2 65.7 14.5 10.4 76.0 19.8 15.4
MLMAN (Ye & Ling, 2019) 82.5 23.4 20.4 91.8 30.5 28.5 70.7 20.4 15.4 81.9 23.3 19.2
TGIN (Wang et al., 2022) 83.7 27.5 24.0 93.1 33.6 32.3 72.3 22.8 17.3 83.7 26.6 22.8
NNM (He et al., 2022) – – – 88.7 32.6 32.2 – – – 75.1 26.6 25.0
RelATE (Cong et al., 2022) 66.3 46.5 28.7 79.9 59.6 42.3 54.7 37.9 20.3 75.4 57.0 40.9
PTN (Fei et al., 2022) 81.1 47.2 30.0 84.2 56.9 40.0 68.7 39.4 25.3 77.6 52.4 36.2

SQGE (Ours) 69.5 38.9 38.5 80.1 50.2 49.5 58.3 31.8 31.2 76.5 47.2 46.4
Improved −14.2 −8.3 +8.5* −13.0 −9.4 +7.2* −14.0 −7.6 +5.9* −8.1 −9.8 +5.5*
Fig. 5. Experimental results of the model under (a) different mask threshold settings and (b) support-query prototype ratio setting.
Table 9
Comparison and analysis of the time complexity of the models, where 𝑛 represents
the sentence length, 𝑘 represents the number of entities in the entity-level feature
enhancement module, and 𝑁 represents the number of relation categories. For example,
in 5-way 5-shot, 𝑁 is 5.

Model Encode
computing

Prototype
computing

All

TGIN (Wang et al., 2022) 2𝑛 2𝑁2 2(𝑁2 + 2)
RelATE (Cong et al., 2022) 2𝑛 𝑁 + 4𝑁 + 1 2𝑛 + 5𝑁 + 1
PTN (Fei et al., 2022) 𝑛 𝑁2 + 4𝑁 + 1 𝑛 +𝑁2 + 4𝑁 + 1
TLSM (Jiang et al., 2023) 𝑛 𝑁 + 4𝑁 + 1 𝑛 + 5𝑁 + 1
RCTE (Liao et al., 2024) 3𝑛 𝑁 + 4𝑁 + 1 3𝑛 + 5𝑁 + 1
SQGE (Ours) 𝑘𝑛 2𝑁 + 1 𝑘𝑛 + 2𝑁 + 1

5.5. Ablation studies

We performed ablation studies to examine the effects of each dis-
tinct component in our model. From Table 12, where removing each
component of the model results in performance degradation of rela-
tional triplet extraction. The entity-level feature enhancement strategy
can significantly improve the F1 value of the model from 26.38% to
31.78% under 5-way 1-shot, representing a 5.4% increase. In the 5-way
5-shot, the entity-level feature enhancement strategy only increased
the F1 value of the model by 1.29%, while the support-query proto-
type guidance strategy achieved the best performance improvement,
from 33.92% to 37.49%, 3.57% improvement. This is because the
sample volume is very scarce in 1-shot settings, and entity character
enhancement strategies are more helpful for the model. The entity-
level feature enhancement strategy can enhance the representation of
the entity prototype by integrating more information about similar
entities. When the number of entities is 1, in the 1-shot setting, a single
entity represents the entity prototype, which often produces a large
9 
deviation. In the 5-shot setting, as the number of entities increases,
the representation of the entity prototype tends to be more perfect.
Therefore, the entity-level feature enhancement strategy will play a
greater role in the scenario with fewer samples. The support-query
prototype guidance strategy can play a greater role when the base
model is better, which is also confirmed by subsequent analysis. For
the support-query prototype guidance strategy, the F1 value of the
model increased from 26.38% to 29.71% under 5-way 1-shot, 3.33%
improvement. However, as the base model improves, the effect of the
support-query prototype guidance strategy becomes increasingly better.
For example, in the 5-way 1-shot, based on the use of both entity-level
feature enhancement and multi-level contrastive learning strategies, the
support-query prototype guidance strategy increased the F1 value of the
model from 34.37% to 38.45%, an increase of 4.08%. Especially under
the 5-way 5-shot setting, the prototype guidance strategy increased the
model’s F1 value from 40.55% to 49.49%, an increase of 8.94%. The
support-query prototype guidance strategy is mainly divided into two
steps. First, the query data mask is obtained based on the support set
prototype to build the query set prototype. Then the query set prototype
is fused with the support set prototype to obtain the final prototype to
predict the relational triples in the sentence. Therefore, when there is
a stronger basic model, the initial matching results of the model will
be more accurate, resulting in a better query set prototype and better
model performance.

Furthermore, based on the results of the ablation experiments, we
found that there is a mutually reinforcing effect between the vari-
ous proposed components. Specifically, the performance improvement
brought by the combination of each component is significantly higher
than the effect of using a component alone. For example, in the multi-
level contrastive learning strategy, when only using this strategy, the
performance of the model under the 5-way 1-shot and 5-way 5-shot
tasks is improved by 2.45% and 1.45%, respectively. However, when
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Table 10
Efficiency analysis of the model. We selected the specific experimental data of RelATE and SQGE on the
dataset FewRel for analysis. MO: Memory Occupation (G), TT: Training Time (m), IT: Inference Time (s).
‘‘ELFE’’ denotes the entity-level feature enhancement, ‘‘MLCL’’ denotes the multi-level contrastive learning,
and ‘‘SQPG’’ denotes the support-query prototype guidance.

Setting 5-way 1-shot 5-way 5-shot

TT(m) IT(s) MO(G) F1-score TT(m) IT(s) MO(G) F1-score

RelATE (Cong et al., 2022) 275 394 4.65 28.7 452 585 6.91 42.3
SQGE 391 291 6.79 38.5 1043 1116 14.89 49.5

w/o ELFE 268 152 5.15 34.51 382 292 7.01 43.36
w/o SQPG 233 131 4.85 28.83 345 274 6.51 35.37
w/o MLCL 221 118 4.82 26.38 331 245 6.49 33.92
‘
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Table 11
Hyperparameter settings in the entity-level feature enhancement module are mainly
erformed on the FewRel dataset. 𝑘 represents the number of enhanced entities, MO:
emory Occupation (G), TT: Training Time (m).

Setting 5-way 1-shot 5-way 5-shot

k = 1 k = 3 k = 5 k = 7 k = 1 k = 3 k = 5 k = 7
TT(m) 268 324 391 432 382 619 1043 1247
MO(G) 5.15 6.21 6.79 8.02 7.01 11.4 14.89 18.7

F1 34.51 36.98 38.45 38.94 43.36 45.96 49.49 48.46

Fig. 6. The performance change trend of each component. ‘N’ denotes no components,
‘E’ denotes ELFE, ‘M’ denotes MLCL, ‘S’ denotes SQPG.

this strategy is combined with entity feature enhancement and support
query prototype guidance strategies, the model improvement increases
significantly to 3.89% and 4.9%. The reason for this improvement is
that when the entity category representation is more accurate, the
model can construct more distinctive positive and negative samples,

hich helps to learn the characteristics of positive and negative samples
more effectively. In addition, this also proves that our model focuses on
he overall intra-class and inter-class gaps, and the various components
an cooperate effectively without redundancy. In the ablation experi-

ment, the performance change trend of each component is shown in
Fig. 6.

5.6. Prototype visualization and analysis

5.6.1. Multi-level comparative learning
To visualize the effect of multi-level comparative learning on the

model, we randomly selected six entity categories from the test set,
and the results are shown in Fig. 7. (1) Under the setting of 5-way
-shot, compared with Figs. 7(a), 7(b) has apparent separation be-

tween prototypes due to the use of multi-level contrastive learning. In
contrast, the prototype of Fig. 7(a) has a mixture of many different
10 
Table 12
Ablation studies on FewRel. ‘‘ELFE’’ denotes the entity-level feature enhancement,
‘MLCL’’ denotes the multi-level contrastive learning and ‘‘SQPG’’ denotes the support-
uery prototype guidance.
ELFE MLCL SQPG 5-way 1-shot 5-way 5-shot

26.38 33.92
✓ 31.78 ↑5.40 35.21 ↑1.29

✓ 28.83 ↑2.45 35.37 ↑1.45
✓ 29.71 ↑3.33 37.49 ↑3.57

✓ ✓ 34.37 ↑7.99 40.55 ↑6.63
✓ ✓ 34.51 ↑8.13 43.36 ↑9.44

✓ ✓ 34.56 ↑8.18 44.59 ↑10.67

✓ ✓ ✓ 38.45↑𝟏𝟐.𝟎𝟕 49.49↑𝟏𝟓.𝟓𝟕

categories. This demonstrates that our contrastive learning strategy
effectively separates different types of samples. Minimizing the spatial
distance among samples of the same classes and increasing the spatial
distance among samples of other classes reduces the inter-class gaps. (2)
Under the 5-way 5-shot setting, compared with Fig. 7(c), the prototypes
n Fig. 7(d) are closer together, and the distance between them is
elatively balanced, neither too close nor too far, which shows that
ur contrastive learning strategy can effectively cluster samples of the

same type. (3) Under the 5-way 5-shot setting, the visualization effect
of the prototype is much better than that of the 5-way 1-shot, which
shows that increasing the number of samples can significantly improve
the learning effect of the model. (4) Comparing Figs. 7(c) and 7(d),

e can see that prototypes of the same type are not always grouped
n the same cluster, as there can often be more detailed classifications
nder the category. In the future, we can try to explore multi-prototype
olutions.

5.6.2. Entity-level feature enhancement
To intuitively feel the impact of enhancing entity features on the

odel, we selected the same six categories from the test set used in the
ulti-level contrastive learning prototype visualization. As shown in

Fig. 8. (1) Fig. 8(a) displays numerous category-confusing prototypes
due to the variability among individual samples in the 5-way 1-shot.
Conversely, Fig. 8(b) exhibits a notable enhancement in the distribution
of prototypes due to the implementation of entity augmentation, which
mproves the representation of prototypes belonging to the same class
f entity. (2) Upon comparing Figs. 8(a) and 8(c), it is evident that
n the 5-way 5-shot scenario, the prototype distribution becomes more
ational as the base sample size increases. However, it is worth noting
hat specific prototypes still exhibit category crossovers. (3) The num-
er of prototype cross-samples in Fig. 8(d) is lower than in Fig. 8(c),

indicating that the entity enhancement technique remains effective
nder the 5-way 5-shot setting. However, the effectiveness steadily
iminishes as the base sample size increases. The entity-level feature

enhancement strategy effectively strengthens the feature representation

of samples in the same classes, reducing the inter-class gaps.
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Fig. 7. Visualization of MLCL prototypes. (a) Remove the MLCL module under 5-way 1-shot. (b) SQGE under 5-way 1-shot. (c) Remove the MLCL module under 5-way 5-shot.
(d) SQGE under the 5-way 5-shot.
Fig. 8. Visualization of Entity-Level Feature Enhanced prototypes. (a) Remove the ELFE module under 5-way 1-shot. (b) SQGE under 5-way 1-shot. (c) Remove the ELFE module
under 5-way 5-shot. (d) SQGE under 5-way 5-shot.
5.6.3. Support-query prototype guidance
We performed a similarity comparison of prototypes between dif-

ferent datasets under 5-way 5-shot. The comparison is performed by
calculating the similarity between the prototypes and the golden labels
of the query set in each test set episode and then averaging all the
results. It is evident that the higher the degree of similarity between
them, the more accurate the recognition result. Fig. 9. shows that the
similarity between the hybrid prototype built based on the support-
query prototype guidance method and the query set is the highest,
around 0.82. It demonstrates that based on the existing information
in the support set, a more complete prototype can be constructed by
mining the characteristics of the query set. The similarity between the
support set prototype and the query set is the lowest, which shows that
it is not enough to rely solely on the data in the support set to construct
a prototype. There is an intra-class deviation between the support set
and the query set. The similarity between the query set prototype and
the query set is about 0.75. The support set can mine helpful features in
the query set. However, due to the existence of errors, the support set
is still needed as an additional feature to improve the prototype. The
support-query prototype guidance strategy can close the intra-class gap,
resulting in a more accurate prototype and an improved recognition
effect for the query set.

5.7. Case study

Through case study, we effectively demonstrated the performance
of the SQGE model and deeply analyzed the errors and their causes in
the extraction process. The experimental results are shown in Fig. 10,
which clearly reflects the performance of the model in practical appli-
cations. We summarize the following five main types of errors:

• Entity errors. Although the model can correctly identify the rela-
tion, it extracts the wrong entity, which may lead to misleading
or incomplete information in practical applications.
11 
Fig. 9. Prototype similarity comparison between different data in the 5-way 5-shot.
Where ‘A’ represents the entity representation in the query set, ‘B’ represents the
prototype built based on the support set, ‘C’ represents the prototype built based on
the query set, and ‘D’ represents the hybrid prototype built based on support-query
guidance. The horizontal coordinates indicate the type of prototype, where ‘1’ denotes
prototype ‘O’ and the others are head entity and tail entity prototypes with different
relations.

• Boundary errors. Although the model can correctly identify the re-
lation, it extracts the wrong entity, which may lead to misleading
or incomplete information in practical applications.

• Relation errors. In this case, the model correctly identified the
entities but incorrectly classified the relations between them. This
type of error usually occurs when the similarity between relation
types is high, making it difficult for the model to effectively
distinguish them. This also reflects the complexity of relation
extraction, especially in judging between similar relations. How-
ever, among all recognition error samples, the number of entity
errors is much higher than the proportion of relation errors, which
shows that entity recognition is more complicated.
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Fig. 10. Common scenarios for errors of relational triple on FewRel dataset under 5-way 1-shot. Different colors represent different entities and relations: green for head entities,
blue for tail entities, red for misidentified entities, and orange for relations. Different serial numbers indicate the type of error, where ① indicates entity error, ② indicates boundary
error, ③ indicates relation error, ④ indicates data annotation error, and ⑤ indicates multi-triplet problem. It is important to note that a sentence can have multiple error types.
Fig. 11. Instances of different models on the FewRel dataset under 5-way 1-shot. Different colors represent different entities and relations: green for head entities, blue for tail
entities, red for misidentified entities, and orange for relations.
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• Labeling errors. Some samples in the dataset are inaccurately
labeled, but the model’s recognition results are correct, which
shows the important impact of data quality on model perfor-
mance.

• Multi-triplet problem. Although the triplets identified by our
model are not completely consistent with the golden annotations,
they are all reasonable. This situation reflects that there may be
multiple correct triplets in the dataset, and not all triplets have
been labeled. This shows that when the dataset is constructed,
more triplets can be introduced to enhance the learning ability of
the model.

These error types not only reveal the current limitations of the model
but also provide directions for future improvements. By optimizing
these specific problems, the performance of the SQGE model in entity
relationship extraction tasks can be further improved.

To display the advantages of SQGE more intuitively, we selected the
following two models for case analysis. (1) Baseline, the SQGE model
that removes entity-level feature enhancement, multi-level contrastive
learning, and support-query prototype guidance module. (2) RelATE,
a model for FS-RTE based on relational decomposition, is the best
12 
baseline model among open-source code. Fig. 11 shows four typical
ualitative results, which are as follows. First, all models get correct

triples for simple entities and relations, such as person and place, in
nstance 1. Second, RelATE annotates the start/end position of the
ntity compared with SQGE, which is more likely to produce incorrect
ntity boundaries and makes it challenging to capture entity semantic
nformation entirely. For example, RelATE only recognizes part of the
ead and tail entities in the second instance. In the third instance,
elATE misidentifies the span of the header entity. Third, the proposed
odules of entity-level feature enhancement, multi-level contrastive

earning, and support-query prototype guidance can effectively enhance
he model to solve the problem of intra-class gap and inter-class gap,
hen improve the model effect. In instance 3, due to the complex
entence structure, the Baseline model had difficulty identifying the
riples of the sentence and even misidentifying the relations, while
QGE can accurately identify them. Finally, although all models did

not accurately identify triples that require sentence reasoning, SQGE
still showed certain advantages. In instance 4, SQGE correctly identifies
relations and head entities, whereas Baseline and RelATE can only
extract empty triples. Note that the order of the head and tail entities
can be reversed for the’ sibling’ relation.
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6. Conclusion

In this paper, we propose an FS-RTE method based on support-query
prototype guidance and enhancement, which can effectively alleviate
the intra-class and inter-class gaps. We enhance the representation
of the same class of target entities through entity characteristics and
perform supervised contrast learning between support and query sets
separately. Thus, while strengthening the exact target class represen-
tation, we separate the characteristic space of the target class from
the other classes, reducing the inter-class gap. Furthermore, we de-
veloped a support-query prototype guidance module for constructing
a query prototype using the support set prototype. We then used
these two prototypes to detect relational triples within sentences. The
integrated prototype can accurately capture the consistent fundamental
characteristics of the query object, correctly align the query features,
and minimize the intra-class gap. Experimental results show that our
proposed method can effectively alleviate intra-class and inter-class
gaps, improve prototype quality, and achieve state-of-the-art perfor-
mance. However, SQGE still has some limitations. We conducted a
detailed error analysis in the case study to describe the strengths and
weaknesses of the model. For example, SQGE has particular difficulties
n processing multiple triples in a sentence and faces problems in
omputational performance and efficiency problems when processing
ore relation categories. In the future, we will explore FS-RTE in
ulti-triple scenarios. Multi-triple extraction will face more complex

ituations, with more significant interaction and overlap among triples,
osing greater challenges.
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