
IEEE TRANSACTIONS ON RELIABILITY 1

Fed-OLF: Federated Oversampling Learning
Framework for Imbalanced Software Defect

Prediction Under Privacy Protection
Xiaowen Hu , Ming Zheng , Member, IEEE, Rui Zhu , Member, IEEE, Xuan Zhang , Member, IEEE,

and Zhi Jin , Fellow, IEEE

Abstract—Software defect prediction technology can discover
potential errors or hidden defects by establishing prediction models
before the use of products in the field of software engineering, so
as to reduce subsequent problems and improve software quality
and security. However, building predictive models requires enough
software defect dataset support, especially defect samples. Due to
the involvement of confidential information from various organi-
zations or enterprises, software defect data cannot be shared and
effectively utilized. Therefore, to achieve collaborative training of
multiparty shared software defect prediction models while keeping
the data local to various organizations, we made the federated
learning framework for the issue of software defect prediction.
Meanwhile, the nondefect and defect instances in software defect
datasets are usually imbalanced, which can seriously affect the
software defect prediction performance of the model. Therefore,
this study designs a novel federated oversampling learning frame-
work Fed-OLF. First, the TabDiT method based on deep generative
model is proposed in Fed-OLF to expand and rebalance the local
imbalanced software defect dataset of each client with a certain
degree of privacy protection. Second, a parameter aggregation
strategy based on local information entropy is proposed in Fed-
OLF to further optimize the parameter aggregation effect of the
global shared model, thereby achieving better model performance.
We conduct extensive experiments on the PROMISE dataset and
the NASA Promise repository, and experimental results on the
PROMISE dataset and the NASA Promise repository show that, the
proposed Fed-OLF exhibits better predictive performance under
the F1-score, G-mean, and AUC metrics when compared with the

Received 30 July 2024; revised 27 October 2024; accepted 26 December 2024.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62306009, Grant 62272006, and Grant 62002310, in part
by the Major Project of Natural Science Research in Colleges and Universities
of Anhui Province under Grant KJ2021ZD0007, in part by Wuhu Science and
Technology Bureau Project (2022jc11), in part by Science Foundation of Yunnan
Jinzhi Expert Workstation under Grant 202205AF150006, in part by Yunnan
Provincial Natural Science Foundation Fundamental Research Project under
Grant 202101AT070004, and in part by Major Project of Yunnan Natural Science
Foundation under Grant 202302AE090020030. Associate Editor: T. Takahashi.
(Corresponding author: Ming Zheng.)

Xiaowen Hu is with the School of Computer and Information, Anhui Normal
University, Wuhu 241002, China (e-mail: xwhu@ahnu.edu.cn).

Ming Zheng is with the School of Computer and Information, Anhui Normal
University, Wuhu 241002, China, and also with the Anhui Provincial Key
Laboratory of Industrial Intelligence Data Security, Anhui Normal Unviersity,
Wuhu 240002, China (e-mail: mzheng@ahnu.edu.cn).

Rui Zhu and Xuan Zhang are with the School of Software, Yunnan University,
Kunming 650091, China.

Zhi Jin is with the Key Laboratory of High Confidence Software Technologies,
Ministry of Education; the School of Computer Science, Peking University,
Beijing 100871, China.

Digital Object Identifier 10.1109/TR.2024.3524064

advanced baseline methods. In addition, we verify that both the
TabDiT method and the parameter aggregation strategy based on
local information entropy in Fed-OLF are useful, and the combi-
nation of them can more effectively improve model performance.

Index Terms—Federated learning (FL), imbalanced software
defect dataset, oversampling, privacy protection, software defect
prediction.

I. INTRODUCTION

SOFTWARE defect prediction technology is based on ma-
chine learning and other methods to analyze software data.

By mining and learning software defect data, a software defect
prediction model is constructed to predict potential defect issues
in software products [1], [2]. Software defect prediction is
crucial in modern industry to improve software reliability and
avoid software problems during software operation [3], [4]. In
recent years, various machine learning based software defect
prediction models have attracted a lot of research work, and
some of them have achieved encouraging results [5], [6].

A. Motivation

Despite the progress made by machine learning based models
in software defect prediction, most of them still face the follow-
ing challenges.

In the real world, organizations and enterprises are inde-
pendent of each other, resulting in different data distributions
in their software defect prediction datasets. The common data
distribution differences are class distribution imbalance and
quantity imbalance. Specifically, consider scenario with mul-
tiple enterprises of different scales, including large, medium-
sized, and small enterprises. These enterprises are committed to
developing a learning-based software defect detector that aims
autonomously identify defect modules in their respective soft-
ware products. However, there is a significant scale gap between
these enterprises. Their datasets exhibit size imbalance, meaning
the sample number in the dataset is different. In addition, the
software defect datasets of enterprises also suffer from class
imbalance. Although there are software defect samples in the
dataset, compared to no-defect software samples, these defect
samples only account for a small proportion [7], [8].

In practical applications, collecting and labeling defect data of
software requires a large amount of labor and time costs, which
leads to a limited number of samples of available high-quality
software defect datasets [9]. It is especially difficult for small
enterprises to create datasets large enough for model training.

1558-1721 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-6872-434X
https://orcid.org/0000-0001-9001-0859
https://orcid.org/0000-0002-5445-963X
https://orcid.org/0000-0003-2929-2126
https://orcid.org/0000-0003-1087-226X
mailto:xwhu@ahnu.edu.cn
mailto:mzheng@ahnu.edu.cn

2 IEEE TRANSACTIONS ON RELIABILITY

Fig. 1. Application example of FL in software defect area.

Although each organization and enterprise has a certain amount
of software defect data, the amount of this data is limited.
Software defect detection models based on such datasets and ma-
chine learning algorithms often have the problem of insufficient
training. This will lead to insufficient prediction performance of
the model and limit its practical application effect [10], [11].

In traditional centralized machine learning scenarios, orga-
nizations upload private software defect dataset to the data
center, and then train model based on the data from the data
center. However, software defect data is private and confidential,
including code data, software version data, and other sensitive
information, which involves the confidentiality of enterprises
and organizations. If it is leaked or exploited in the training pro-
cess, it will directly threaten the reputation and property security
of organizations or enterprises. In addition, there are currently
General Data Protection Regulation and California Consumer
Privacy Act laws that protect personally sensitive data. Due
to these strict data protection regulations and privacy policies,
organizations and enterprises cannot merge data sets to train
the model [12], [13]. This limitation will result in incomplete
utilization of data in the field of software engineering, including
software defect data.

Federated learning (FL) [14] is a distributed learning method
as shown in Fig. 1. In FL framework, individual organizations or
enterprises train local models on local datasets and upload model
parameters to the server. The global shared model is obtained
by aggregating the uploaded parameters based on the server.

Training software defect prediction models based on the FL
framework can not only aggregate small-scale datasets from
multiple enterprises to train the model, but also protect the data
security and privacy of these enterprises. However, it cannot
solve the issue of poor model prediction performance caused by
imbalanced class and sizes of dataset [15], [16]. This limitation
is because the server aggregates model parameters based on the
size of client datasets in most FL methods. In other words, this
aggregation means that the model parameters trained on a client
with a large dataset have more weight and greater impact on the
parameters of the global shared model.

Meanwhile, when a client has a large but severely imbalanced
software defect dataset, the model training on such local dataset
may cause its performance to be unsatisfactory. Because the
local model parameters will have a greater impact when the

server updates parameters resulting in poor performance of the
global shared model [17].

This inspires us to design a novel aggregation strategy that
uses an indicator to fairly measure the quality of client local
software defect dataset, thereby determining the contribution
of the local model parameters in aggregation. Therefore, it is
beneficial and valuable to design a method to overcome the data
accessibility and imbalanced software defect data distribution
problems, enabling models to learn the characteristics of soft-
ware defect data well while reducing the risks associated with
data privacy security.

B. Contribution

To alleviate the aforementioned challenges in software defect
prediction, this study proposes a new FL framework, Fed-OLF,
which not only improves the performance of software defect
prediction model under imbalanced data distributions, but also
protects the data privacy of various organizations to a certain
extent.

Specifically, akin to FedAvg [14], Fed-OLF aggregates pa-
rameters on a central server through collaborative learning be-
tween client models to obtain a globally shared model. It only
shares model update parameters and data distribution infor-
mation rather than sensitive local software defect data, meet-
ing the data privacy and security requirements of enterprises.
Meanwhile, a new oversampling method TabDiT based on deep
generative model is proposed in Fed-OLF, which balances the
client training software defect dataset by synthesizing defect
samples, solving the negative impact of model performance
training on imbalance software defect data.

Considering the risk of privacy leakage in the model param-
eters trained on the local client. In Fed-OLF, the parameters
trained by the model on a balanced software defect dataset
can reduce the risk of privacy breaches caused by malicious
attackers analyzing the model parameters to obtain confidential
information from sensitive data. Because the uploaded model
parameters are trained on a balanced software defect dataset
with added synthetic samples rather than the raw dataset, the
attacker may not be able to infer sensitive information from the
raw real software defect dataset.

In addition, Fed-OLF introduces a novel weighted aggrega-
tion strategy based on local information entropy (LEW). This
strategy measures the contribution of client model parameters
in aggregation based on the local information entropy, further
optimizing the global shared model parameters to improve the
predictive performance.

With the above-mentioned improvements, our Fed-OLF en-
hances the robustness of the model predictive performance on
imbalanced software defect datasets, while considering the strict
data privacy protection requirements of each organization. In
summary, our study has the following contributions.

1) This study proposes Fed-OLF, a novel FL framework
designed to improve the predictive performance of models
on imbalanced software defect datasets while playing a
role in data privacy protection to a certain extent.

2) A new oversampling method TabDiT has been designed in
Fed-OLF to synthesize software defect samples. It not only
effectively addresses the negative impact of imbalanced
software defect datasets on model training during FL, but
also plays a role in protecting the privacy of local model
upload parameters.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 3

3) Fed-OLF introduces a new aggregation strategy LEW
based on the local information entropy, thereby enhanc-
ing the aggregation effect of the global shared model to
improve the predictive performance.

The rest of this article is organized as follows. The related
work is introduced in Section II. In Section III, the details of
Fed-OLF are described. The experimental setup is provided in
Sections IV, and V provides the experimental results. In Sec-
tion VI, the limitations of our method are discussed. Section VII
summarizes the research content of this study and provides
prospects for future research work.

II. RELATED WORK

A. Federated Learning

The Google AI Research Center first proposed FL [14], which
is a distributed machine learning approach that supports large-
scale participants. Previous studies have demonstrated the ability
of FL to promote practical applications in some fields, such as
autonomous driving [18], medical diagnostics [19], credit card
fraud detection [20], and network intrusion detection [21], [22].

FL achieves collaborative training among multiple partic-
ipants while ensuring privacy protection and data security.
Specifically, FL, as a collaborative mechanism, includes a cen-
tral server and multiple clients. In FL system, each client is
an organization or enterprise, server randomly selects a subset
Kr ⊆ K of clients to participate in training in each round of
communication and assigns the current global shared model. The
clients train models independently on their own local datasets.
After each round of training, clients upload updated model
parameters to a central server. The server adopts the parameter
aggregation strategy to aggregate the model parameters up-
loaded by the client and obtain an updated global shared model.
Then server sends the updated global shared model parameters
to all clients, and each client optimizes the local model with the
new model parameters from global shared model. FedAvg [14]
is the most basic algorithm in FL. The server aggregates and
updates the global shared model parameters according to the
client dataset size. The FedAvg aggregation process is defined
as follows:

W r+1 =
∑
k∈Kr

θr[k]W r+1
k (1)

where θris the federated aggregation vector at communication
round r, which determines the contribution of the received
local models and W r+1

k denotes the updated model of client k.
FedAvg employs the local sample size | Dk | of client k as a
federated aggregation vector, the weight is proportional to the
local dataset size

θr[k] =
|Dk|∑

j∈Kr
|Dj | , ∀k ∈ Kr. (2)

Since the researchers proposed FedAvg in 2017, FL has
undergone significant development, allowing it to be applied to a
variety of fields involving sensitive data. Recent studies applying
FL to various scenarios have focused on protecting privacy and
reducing communication overhead [23], [24], but only a few
studies have applied FL to software defect prediction [16].

B. Imbalanced Software Defect Data Learning

In the real world, data distribution is generally imbalanced.
In the problem of software defect prediction, most software
only has defects in a few modules, resulting in a much larger
number of nondefect samples than defect samples, forming an
imbalanced software defect dataset [25]. In imbalanced software
defect datasets, there are few defect samples that are insufficient
to support the training of predictive models. Therefore, the
oversampling method is considered for the imbalanced software
defect dataset. On the one hand, the categories can be balanced
to reduce the impact on model training, and on the other hand,
the data scale can be expanded to provide enough training for
the model.

With the rapid development of deep learning technology in
recent years, deep generative models have been widely applied
in different fields such as audio [26], image [27], and video
synthesis [28]. The generation model of tabular data is becoming
more and more important. The generated data distribution by the
traditional oversampling is similar to raw data, which is easy
to produce overfitting problems. The generative model has the
ability of self-learning and can generate diverse samples, and its
excellent generation ability has been widely used [29], [30], and
some researchers have applied it to imbalanced software defect
data [31]. Xu et al. [32] proposed Conditional Tabular GAN
(CTGAN) and a variational autoencoder for mixed-type tabular
data generation (TVAE) based on the generative adversarial
networks (GAN) [33] and variational autoencoder (VAE) [34]
respectively. OCT-GAN [35] is a generative model based on
neural ordinary differential equations. SOS [36] and StaSy [37]
are tabular data synthesis methods based on the generation mech-
anism of scores. TabDDPM [38] and CoDi [39] apply the popular
diffusion-based generation model to generate tabular data.

Although research results continue to increase, the research on
data augmentation based on generative models mainly focuses
on image and video generation in the field of computer vision,
and generative models applied to tabular data still have room
for further improvement in synthesizing high-quality samples.
In GAN, the training process is often unstable. The improved
generative model based on GAN is prone to mode collapse
in the training, which means that the model generates a few
samples and fails to cover the diversity of data. The quality and
number of training data will greatly affect the performance of the
score-based generated model. When the training data is noisy or
imbalanced, the generated results may also be affected. Tabular
data has complex and unique features. The high dimensionality,
sparsity, and class imbalance of data pose significant challenges
to the denoising neural network in the generative model based
on the diffusion model. The current generative model based
on the diffusion model adopts simple U-Net architecture or
MLP architecture as the denoising network, and such simple
neural network architecture is difficult to generate high-quality
tabular data.

C. Imbalanced Software Defect Data Challenge in FL

The distribution of each class in software defect datasets
owned by different organizations and enterprises can vary
greatly. Different sizes enterprises have different sizes datasets.
In FL, the software defect data of each client is independently,
which makes the local data distribution of client not consistent
with the overall software defect data distribution, and there may
be an obvious mismatch between local imbalance and global

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 2. Fed-OLF framework overview.

imbalance. To distinguish these imbalance problems of software
defect dataset in FL, the imbalanced software defect dataset
problem can be summarized into three types:

1) Local imbalance, which means that the software defect
dataset distribution in each client is class imbalanced.

2) Global imbalance, from a global perspective, the collec-
tion of software defect dataset in all clients is imbalanced.

3) Size imbalance, where the software defect dataset size of
each client is uneven. This study mainly focuses on local
imbalance and global imbalance.

Recently, some research have focused on addressing the im-
balance problem in FL. FedNoRo [40] used knowledge distil-
lation and distance-aware aggregation function to update the
federated model, and introduced logical adjustment (LA) to
solve the imbalanced data. FedNoRo introduced LA to address
imbalance problem, which increased the focus on the minority
class of data, but also led to the neglect of majority class.
Zhang et al. [41] designed an efficient heterogeneity sensing cus-
tomer sampling mechanism, namely Fed-CBS, based on a class
imbalance measurement index to achieve privacy protection,
which can reduce the class imbalance of client packet datasets.
However, in the FL practical application, the clients available in
each round of communication are not mandatory, so this strategy
has limited applicability by actively selecting clients. FedGR
[42] proposed the imbalanced softmax function and gravitation
regularizer to slove the problem of imbalanced sample number
within the client and promote cooperation between clients to
solve the cross-client imbalance problem. However, in the case
of high imbalance and few defect samples, the ability of FedGR
strategy to learn the characteristic information of defect samples
is limited.

Relevant studies indicate that the final quality of deep neural
network models depends on the first few training cycles. During
the critical period, no matter how much additional training is
conducted during this period, low-quality or insufficient training

data will lead to irreversible degradation of model performance
[43]. This phenomenon has been revealed in recent work in FL
[44], [45], which has brought to our attention to the various
imbalances in FL.

III. PROPOSED FED-OLF

This study first provided an overview of Fed-OLF in this
section, and then elaborated on the proposed framework and
its workflow.

A. Framework Overview

To address the aforementioned issues in software defect pre-
diction based on FL, we propose Fed-OLF, which oversamples
the imbalanced software defect training dataset of each client to
achieve class distribution balance while ensuring data security
and privacy. Meanwhile, the FL aggregation process is opti-
mized considering the different information attributes of client
datasets. Fed-OLF not only reduces the interference of various
imbalance problems on training and aggregation, improves the
model prediction performance, but also protects the privacy of
client model parameters to a certain extent.

As shown in Fig. 2, such as a typical FL process [14], the
Fed-OLF framework also includes multiple clients and a central
server. The client trains the local model with private software de-
fect datasets. The central server provides collaborative learning
between the global model and client devices. Prior to FL server
initialization, each client uses the TabDiT method to process
their own imbalanced software defect dataset in local. After
each client software defect dataset is rebalanced, FL server first
distributes the global shared model to each client, and the model
on the client is trained using a locally balanced software defect
dataset to obtain updated model parameters, which are uploaded
to the server. The server optimizes the parameters according to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 5

Algorithm 1: Training Process of Fed-OLF.
Input: rounds of communication: R, number of local

epochs: E, number of clients: K, the fraction of
participating clients: c, software defect dataset on
client k: Dk.

Output: Global shared model WR
G

1: Server executes:
2: Initialize W 0

G;
3: Collect local information entropy of clients: LE;
4: for r = 1 to R do
5: Nr = max(c·K, 1)
6: Kr ← (random subset of Nr);
7: for k ∈ Kr parallelly do
8: wr+1

k ← LocalUpdate(k, W r
G);

9: Compute the federated aggregation vector θr[k]
by (15);

10: end for
11: Aggregate local models by (16);
12: end for
13: return WR

G
14: Clients executes:
15: // clients rebalancing
16: for each client i = 1 to N do
17: DO

i ← TabDiT(Di);
18: end for
19: LocalUpdate(k, W r

G):
20: wr

k ←W r
G

21: for e = 1 to E do
22: wr+1

k ← wr
k - η��(wr

k; DO
k);

23: end for
24: return wr+1

k

the parameter aggregation strategy LEW, finally gets the updated
global model, and repeats the above steps in multiple rounds of
communication.

In the typical FedAvg, the imbalance problems are not solved.
In Fed-OLF, a novel federated oversampling learning framework
is proposed to address the imbalanced software defect dataset
problem, which can not only rebalance the client training dataset
but also protect the privacy of model parameters. Second, we
improve the parameter aggregation strategy of the server and
design a weighted aggregation strategy based on the local infor-
mation entropy of the client. Combining these two components,
Fed-OLF can realize the goal of sharing the global model with
multiparty training while ensuring client data privacy and im-
proving software defect predictive performance of the model.

Algorithm 1 describes the training process of Fed-OLF. After
starting the FL training task, the server initializes the global
shared model and initiates communication. When a new round
of communication r begins, the server sends the global shared
model to all participating local clients. Then, the server randomly
selects a group client to participate in this training round. For
each client, the local imbalanced software defect dataset is
preprocessed, and the training software defect dataset is bal-
anced by using the TabDiT method. The client participated in
this training round trains the downloaded global shared model
on their balanced software defect dataset and uploads updated
parameters to server. Finally, the server calculates the federated
aggregation vector according to the local information entropy

Algorithm 2: TabDiT.
Input: Client training software defect dataset: D =

{(xnum
i , yi)}, i = 1, …, p; yi�{01}

Output: Balanced software defect dataset of client: DO.
Clients:

1: Divide D into nondefect and defect class: Dnondefect,
Ddefect;

2: Identify the size of Dnondefect and Ddefect: Nnondefect,
Ndefect;

3: Calculate the number of generated samples: Ng

←Nnondefect–Ndefect;
4: TF-MLP Training (Ddefect);
5: Dgen ← TF-MLP Sampling (Ng);
6: DO ← D � Dgen;
7: return DO

of the client software defect dataset attribute, and then uses the
parameter aggregation strategy to update global shared model.
After repeated the R rounds of communication, a multiparty
shared global model WR

G is obtained.

B. Fed-OLF Workflow

The Fed-OLF workflow includes client rebalancing, initial-
ization, model training, and parameter aggregation, as shown in
Fig. 3.

1) Client Rebalancing: Before FL server initialization, the
local imbalanced software defect dataset of the client participat-
ing in the FL model training task needs to be rebalanced (1©)
to resolve the local imbalance and global imbalance problem in
FL. The local imbalance in the client data can lead to weight
divergence and precision loss of model training. We propose an
oversampling method TabDiT based on diffusion model [38] to
solve the imbalanced software defect dataset problem in local
clients, as shown in Algorithm 2.

TabDiT uses different modeling strategies to deal with various
feature types in tabular data for imbalanced software defect
datasets of local client. Specifically, for the software defect
dataset, a tabular data sample x = [xnum, y] contains Nnum

numerical features xnum� R
Nnum and classification feature y

with Ci categories. Gaussian diffusion is employed to model
the numerical attributes and multinomial diffusion is employed
to model the categorical attributes. We first apply one-hot en-
code on the categorical features to obtain xcati

ohe ∈ {0, 1}Ci , and
normalize the numerical features as the input of the model. Each
individual forward diffusion process will process each categori-
cal attribute to ensure that the noise component of each feature is
sampled independently. The TabDiT algorithm first divides the
imbalanced software defect dataset into nondefect and defect
datasets, and then calculates the number of synthesized samples
of the model (line 1–4). Considering the imbalanced software
defect dataset of client, TabDiT trains on software defect datasets
to build a generative model.

The forward diffusion process in TabDiT: Given defect sam-
ples x0�Ddefect and the time steps T, then the forward process
is xt obtained by adding Gaussian noise to the xt-1 obtained by
time step t, and the step size is controlled by the variance table
{βt ∈ (0, 1)}Tt=1, then

xt =
√

1− βtxt−1 +
√

βtε (3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Fed-OLF workflow.

where xi denotes the sample after adding Gaussian noise in time
step i. When αt = 1− βt, ᾱt =

∏T
i=1 αi, xt can be expressed

as

xt =
√
ᾱtx0 +

√
1− ᾱtε (4)

where ε ∼𝒩(0, I) is a Gaussian noise.
The reverse process of TabDiT: Added noise ϵ is predicted by

the multilayer neural network model, and a new sample close to
the original data distribution is generated by gradually removing
the noise in each time step t

xt−1 =
1√
αt

(
xt − 1− αt√

1− ᾱt
εθ(xt, t)

)
+ σtz (5)

where αt = 1-βt, ᾱt =
∏

i≤tαi, z ∼𝒩(0, I), ϵθ (xt, t) is an es-
timation function for predicting the real noise ϵ based on xt [46].
The core of TabDiT method is to improve the denoising effect of
model on noisy data in the reverse process, which directly affects
the quality of the generated software defect samples. Therefore,
in TabDiT reverse process, we use the improved Transformer
architecture and combine the MLP model [47] to construct a
hybrid architecture TF-MLP

TF−MLP(x) = MLP(TF(x)) (6)

TF(x) = Linear(ReLU(Transformer(x))) (7)

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x)))) (8)

MLPBlock(x) = Dropout(ReLU(Linear(x))). (9)

The timestep t, class y, and input xin are processed in the same
way as [48], [49], as follows:

t_emb = Linear(SiLU(Linear(SinTimeEmb(t)))) (10)

y_emb = Embedding(y) (11)

x = Linear(xin) + t_emb+ y_emb (12)

where SinTimeEmb refers to a sinusoidal time embedding as in
[48] and [49] with a dimension of 128. The model trains defect
samples and generates enough new samples to make the raw
local imbalanced software defect dataset completely balanced

(line 5–6). In the reverse process, the denoising neural network
based on the TF-MLP architecture can learn the correlation
between different features through the self-attention mechanism
and make more accurate noise predictions. Therefore, the Tab-
DiT method achieves a better denoising effect, resulting in the
generation of high-quality software defect samples.

In addition, while realizing the balanced software defect
datasets of local client, it also solves the global imbalance prob-
lem. In FL, if the condition of local client balance is satisfied,
then the global balance is also satisfied, and the proof process is
as follows.

We define the variables: in FL, assuming there are K clients,
and each client k (k = 1, … , K) has a local imbalanced software
defect dataset Dk, in which the nondefect class Cknon−

defect size
is represented by Nk non−

defect , and the defect class Ck
defect size is

represented byNk
defect. From a global perspective, in the set of all

client local imbalanced software defect data, the sample quantity
of global nondefect class Cnondefect and defect class Cdefect is
𝒩nondefect and 𝒩defect, respectively.

Proposition: In FL, if local balance is satisfied for all clients,
then global balance is satisfied.

Proof: When the clients are local balanced, then

Nk
non−defect = Nk

defect 1© for any kε{1, . . .K}.
From a global perspective, for global dataset:

𝒩nondefect =

K∑
k=1

Nk
nondefect 2©

𝒩defect =

K∑
k=1

Nk
defect 3©

By substituting 1© into 2©, then

𝒩nondefect =
K∑

k=1

Nk
nondefect

K∑
k=1

Nk
defect =𝒩defect

So 𝒩nondefect =𝒩defect 4©.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 7

As can be seen from 4©, FL global balance is satisfied.
Thus, “In FL, if local balance is satisfied for all clients, then

global balance is satisfied” is proved.
2) Initialization: During the initialization of the FL, the

server waits for the participating client to join. The client partici-
pates in training by sending the server local information entropy
value that measures the software defect data quality of the local
client (2©). The information entropy [50] is an metric to measure
the degree of discreteness and randomness of a dataset. Suppose
that the software defect dataset D contains class M and xi
belongs to class m is probability pm(xi)

, the information entropy is
defined as

I−Ent(D) = −
M∑

m=1

pm(xi)
log2p

m
(xi)

. (13)

The smaller the information entropy value, the higher the
purity of D, indicating a larger sample concentration, smaller
dispersion, lower randomness, and less information content in
the set. On the contrary, the larger the information entropy value,
the lower the purity of set D, indicating more sample dispersion,
greater uncertainty, and more information content in the set. We
consider that there are two categories in software defect dataset,
namely nondefect samples and defect samples. For dataset Dk

of client k, the local information entropy for client k is defined as

LE(k) = −
(|Dk

nondefect|
|Dk|

)
log2

(|Dk
nondefect|
|Dk|

)

−
(|Dk

defect|
|Dk|

)
log2

(|Dk
defect|
|Dk|

)
(14)

where | Dk | denote the size of dataset Dk. We analyze that
the larger the LE(k) value of local dataset Dk on client k, the
larger the information entropy value, indicating that the greater
the dispersion of the dataset, the greater the randomness, and
the more the information. When all clients participating in
federated training are identified, the FL server initializes the
weights and optimizers of the global shared model, and then
collects the LE parameters uploaded by all participating clients.

3) Model Training: When each communication round be-
gins, the server deploys the global shared model to clients (3©)
and randomly selects a group of clients to participate in the FL
training. Then the clients download the global shared model
parameters, and participating clients perform E rounds local
training on balanced local software defect dataset in each epoch
with mini-batch SGD algorithm (4©). In the framework, the
training dataset is balanced, and the local model trained on this
dataset can fully learn the information of software defect sam-
ples, without causing the model to skew, so as to focus on more
important defect samples. After all participating clients com-
plete their local training, they send updates to the FL Server (5©).

4) Parameter Aggregation: Since each client generates soft-
ware defect samples independently, the distribution of each class
in software defect dataset of different the local clients will vary
greatly. So, we propose a new parameter-weighted aggregation
strategy, which takes into account the dispersion degree and
information difference of each client raw imbalanced software
defect dataset, to measure the model parameters contribution
degree of each local client in the aggregation. The local param-
eters collected by FL server are aggregated according to the
local information entropy uploaded by the client (6©), and the
weight is proportional to the value of local information entropy.

TABLE I
EXPERIMENTAL NOTATIONS

In communication r, the federated aggregation vector based on
LE is defined as

θr[k] =
LE(k)∑

j∈Kr
LE(j)

∀k ∈ Kr. (15)

Finally, FL server aggregates all local model parameters in-
volved in training and updates the global shared model to

W r+1
G =

∑
k∈Kr

θr[k]wr+1
k . (16)

The global model parameter update process consists of two
steps. First, the server calculates federated aggregation vector
based on the local information entropy of the participating client
to determine the weight of the local parameter aggregation. Next,
the parameters W r+1

G of global shared model are calculated
according to (16) for next training round.

IV. EXPERIMENTAL SETUP

This section introduces the experimental setup, including
imbalanced software defect datasets, compared baselines, envi-
ronmental setup, evaluation metrics, statistical tests and privacy.
The symbols used in the experiment are listed in Table I.

A. Datasets

We selected eight imbalanced software defect datasets from
different Java projects in PROMISE dataset [16] and eight
defect prediction datasets from the NASA Promise repository
for experiments. In addition, all methods adopted ten-fold cross-
validation on each software defect dataset in the experiments,
taking the average of ten results as the comprehensive evaluation
of model prediction performance to reduce random errors. The
imbalanced software defect dataset information is shown in
Table II.

B. Baseline and Comparison Methods

We combined the TabDiT method proposed in Fed-OLF and
various existing tabular data generation methods into the FedAvg
framework for experimental comparison.

1) CTGAN [32] is the most popular and well-known GAN-
based synthetic data generation model.

2) OCT-GAN [35] is a neural network consisting of ordinary
differential equations.

3) TabDDPM [38] is a simple design of DDPM for tabular
problems.

4) CoDi [39] solves the training challenge caused by mixed
data types by adopting a double-diffusion model approach.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON RELIABILITY

TABLE II
INFORMATION OF PROMISE AND NASA DATASETS

TABLE III
PARAMETER SETTINGS ON DIFFERENT DATASETS

5) STaSy [37] is a score-based tabular data synthesis gener-
ation model.

In addition, we also compare the typical parameter aggrega-
tion strategy in FedAvg with the LEW strategy and record the
typical parameter aggregation strategy in FedAvg as AVG.

C. Environmental Setup

In Fed-OLF, the cross entropy is used as a loss function
and communication rounds R is 300, learning rate η of SGD
is 0.1 as the optimizer for all optimization processes, and test
batch size Bt to 512. For local training, E and B is 5 and 16,
respectively. For heterogeneous data distribution among clients,
Dirichlet distribution is used to divide the data. The MLP is
used as global shared model and local model, each model has
two fully connected layers, where the ReLU activation function
connects the input layer and the hidden layer. All comparison
methods applied the same model structure. The FL framework
and MLP are implemented in PyTorch. The parameters related to
the client for each imbalanced software defect dataset are shown
in Table III.

D. Performance Evaluation Metrics

To accurately evaluate the performance of the method, we use
the F1-score, G-mean and the area under curve (AUC) based
on the receiver operating characteristic (ROC) curve, which are
widely used in imbalanced data study to measure the model
classification performance [51], [52].

E. Statistical Tests

To further discuss and evaluate the effectiveness of Fed-OLF
objectively, statistical tests are used to determine whether there
are significant differences across all methods on different soft-
ware defect datasets. The statistical tests process consists of three
steps. First, on each software defect dataset, all methods are
ranked from best to worst according to the test performance of
each method, and the order values 1, 2, …, the best method
order value is 1; if the test performance of any of the methods is
the same, the order value is equally divided. The Friedman test
is then used to determine whether these methods all perform
identically. If not, then the hypothesis that all methods perform
identically is rejected. Finally, Nemenyi posthoc test needs to
be used for checking whether there is a significant difference
between any two methods. In this study, the confidence level α
= 0.05.

F. Privacy

To study Fed-OLF in a privacy-related context, we measure
the generated software defect samples privacy with mean dis-
tance to closest record (DCR) [38]. Specifically, we calculate the
minimum L2 distance between each synthesized software defect
sample and the real data. Average DCR takes the average of
these distances for all the generated defect samples. A low DCR
value indicates that the sample synthesized by the generated
model mimics some real data points in nature, which may
result in a violation of privacy requirements. A higher DCR
value indicates that the generation model can generate a “new”
software defect data, rather than just an approximate repetition
of the real software defect data that already exists.

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed Fed-OLF, we
analyzed the experimental results by addressing four research
questions.

1) RQ-1: Does the Fed-OLF method outperform baseline on
various software defect datasets?

2) RQ-2: In Fed-OLF, is the data privacy generated by
TabDiT better than the baseline?

3) RQ-3: Does each component in Fed-OLF improve model
predictive performance?

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 9

A. RQ-1: Does the Fed-OLF Method Outperform Baseline on
Various Software Defect Datasets?

Results: Tables IV and V present all the experimental results.
The following conclusions can be analyzed and drawn by ob-
serving the experimental results.

1) In FL framework with the same AVG aggregation strategy,
our TabDiT approach can improve the software defect
predictive performance compared to other baselines.
Table IV presents the experimental results on the
PROMISE dataset. When using the FL framework with the
same AVG aggregation strategy, our TabDiT method out-
performs other baselines on all eight PROMISE datasets.
For example, on the camel-1.6 dataset, compared with
other baselines, the TabDiT increases 8.42%–12.25%,
7.4%–11.32%, and 2.78%–5.38% in the F1-score,
G-mean, and AUC, respectively. On the jedit-4.2 dataset,
TabDiT increases by 6.11%, 6.41%, and 4.31% in F1-
score, G-mean, and AUC, respectively, compared with
TabDDPM that performs best in the baseline methods.
Table V presents the experimental results on the NASA
dataset. Our TabDiT outperforms other baselines on CM1,
JM1, KC1, PC1, PC3, and PC4 datasets when using an
FL framework with the same AVG aggregation strategy.
For example, on the CM1 dataset, the TabDiT method
increases 5.91%–25.39%, 11.23%–47.73%, and 4.11%–
12.16% over other baselines in metrics, respectively. On
the PC3 dataset, our TabDiT increases 3.77%, 2.78%, and
2.01% in metrics, compared with TabDDPM that performs
best in the baseline methods.
Therefore, according to the above-mentioned analysis,
TabDiT method is superior to other baselines in improving
model predictive performance in FL frameworks with
AVG aggregation strategy.

2) In FL framework using the same LEW aggregation strat-
egy, our TabDiT method can improve the software defect
predictive performance compared to other baselines.
Table IV presents the experimental results on the
PROMISE dataset. When using the same LEW aggrega-
tion strategy in the FL framework, our TabDiT method
outperforms other baseline methods on all 8 PROMISE
datasets. For example, on ant-1.7 dataset, TabDiT in-
creases 1.73%–5.24%, 0.76%–7.02%, and 0.81%–3.36%
in F1-score, G-mean, and AUC, respectively, compared to
other baselines. On xalan-2.4 dataset, TabDiT outperforms
CoDi, with improvements of 4.41%, 4.19%, and 2.52% in
F1-score, G-mean, and AUC, respectively.
Table V presents the experimental results on the NASA
dataset. When using the same LEW aggregation strategy
in the FL framework, our TabDiT method outperforms
other baseline methods on the CM1, JM1, KC1, KC2,
MC1, PC1, and PC3 datasets. For example, on CM1
dataset, TabDiT increases by 6.13%–30.53% on G-mean
and 0.79%–7.65% on AUC compared to other baselines.
On the JM1, KC1, KC2, MC1, and PC3 datasets, our
TabDiT method outperforms other baseline methods to
varying degrees in F1-score, G-mean, and AUC metrics,
showing the best performance.
Therefore, based on the above-mentioned analysis, in
the FL framework using LEW aggregation strategy, the
TabDiT method outperforms other baselines in improving
model predictive performance.

3) When using the same baseline method, our proposed
LEW aggregation strategy can achieve better parame-
ter aggregation performance compared to AVG aggre-
gation strategy, thereby improving the model prediction
performance.
Tables IV and V indicate that on all datasets, using the
LEW strategy can improve model performance to varying
degrees compared to the AVG strategy when using the
same baseline method. For example, in Table IV, using the
same OCT-GAN method on xerces-1.3 dataset, our LEW
strategy can improve performance by 11.22%, 11.29%,
and 3.76% in F1-score, G-mean, and AUC, respectively,
compared to the AVG strategy. In Table IV, using the same
TabDiT method on xerces-1.3 dataset, our LEW strategy
can improve performance by 4.92%, 4.17%, and 3% in F1-
score, G-mean, and AUC, respectively, compared to AVG
strategy. In Table V, using the same CoDi method on CM1
dataset, our LEW strategy can improve F1-score, G-mean,
and AUC by 10.09%, 10.87%, and 5.33%, respectively,
compared to AVG strategy. In Table V, using the same
TabDiT method on JM1 dataset, our LEW strategy can
improve F1-score, G-mean, and AUC by 9.62%, 10.27%,
and 2.93%, respectively, compared to the AVG strategy.
The above-mentioned results indicate that when using the
same baseline method, combining our LEW aggregation
strategy within the FL framework can effectively improve
the software defect prediction performance of the model.

4) In general, our Fed-OLF method, which combines TabDiT
and LEW aggregation strategies, can effectively handle
local and global imbalances of FL and train the best defect
predictive model.
As shown in Tables IV and V, the combination of Tab-
DiT and LEW aggregation strategies performs better in
most datasets than the combination of any other base-
line method and aggregation strategy. Thorough analysis
showed that the TabDiT method can generate higher qual-
ity samples compared to other baseline methods. Each
client can train the model on a balanced and high-quality
software defect dataset. In addition, our LEW aggregation
strategy can further optimize parameter updates on the
server. In the same number of training rounds, LEW
strategy can aggregate model parameters according to the
information entropy characteristics of each client dataset,
which can achieve higher model performance than the
traditional data number-based aggregation strategy.

5) Statistical Test Results.
We used statistical tests to further validate the significance
of the differences in detection performance between our
Fed-OLF method and other methods.

We combined six baselines and two aggregation strategies re-
spectively to obtain 12 methods, among which the combination
of TabDiT and LEW is our Fed-OLF method. The values of
Friedman test on the F1-score, G-mean and AUC are 24.200,
33.854, and 28.748, respectively. The critical value of F test
when confidence α = 0.05 is 1.847. On the F1-score, G-mean
and AUC, the values of Friedman test are all greater than
the critical value of F test. Therefore, the hypothesis that the
performance of all methods is the same is rejected. To express
the performance significance difference of each algorithm more
intuitively, Nemenyi post-hoc test is used to further distinguish
each method. Fig. 4 shows the results visually, where (a), (b),
and (c) represent the results on the F1-score, G-mean, and AUC,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON RELIABILITY

TABLE IV
RESULTS OF MODEL PERFORMANCE ON PROMISE DATASET

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 11

TABLE V
RESULTS OF MODEL PERFORMANCE ON NASA DATASET

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 4. Results of Nemenyi posthoc test in terms of (a) F1-score, (b) G-mean, and (c) AUC.

TABLE VI
RESULTS OF SIGNIFICANT DIFFERENCES BETWEEN FED-OLF AND OTHER METHODS

TABLE VII
COMPARISON IN TERMS OF MEAN DCR

respectively. In Table VI, we summarize the methods that Fed-
OLF outperforms and significantly outperforms. Thus, these re-
sults show that Fed-OLF method exhibits excellent performance
in different software defect datasets.

To sum up, we conduct comprehensive experiments on var-
ious software defect datasets to evaluate the effectiveness of
proposed Fed-OLF in training software prediction models. The
experimental results demonstrate that Fed-OLF can improve
the software defect predictive model performance on almost
all software defect datasets, which proves the effectiveness
of our method. The reason why Fed-OLF performs better is
that TabDiT first solves the local imbalanced software defect
dataset problem of clients, allowing the model of clients to
train on balanced software defect datasets, especially in highly
imbalanced environments, while also addressing the global im-
balanced software defect dataset problem at the same time. In
addition, the LEW weighted aggregation strategy can further
optimize parameter aggregation process, thereby improving the
prediction performance of the global shared model.

B. RQ-2: In Fed-OLF, is the Data Privacy Generated by
TabDiT Better Than the Baseline?

Table VII shows the average DCR values for TabDiT, CT-
GAN, OCT-GAN, TabDDPM, CoDi, and StaSy. The average
DCR value is used to measure the privacy of the new samples
synthesized by the generative model, and the higher value is
better. However, it should be noted that out-of-distribution data
such as random noise will also provide a high average DCR,
so it is necessary to combine the average DCR with model
predictive performance on F1-score, G-mean, and AUC metrics.
In Table VII, we observed that TabDiT is more private than
CTGAN, TabDDPM, and StaSy, but less private than OCT-GAN
and CoDi. But from the model performance in Tables IV and V,
under the same aggregation strategy, the baselines based on
OCT-GAN and CoDi performed poorly.

In summary, based on all the above-mentioned results, the
Fed-OLF proposed in this study, on the one hand, the new
samples synthesized by TabDiT have a certain degree of privacy.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 13

Fig. 5. Results of Ablation experiment in terms of (a) F1-score, (b) G-mean, (c) AUC of PROMISE dataset, and (d) F1-score, (e) G-mean, (f) AUC of NASA
Promise repository.

On the other hand, training client model on balanced dataset
can achieve better performance and better balance between data
availability and privacy.

C. RQ-3: Does Each Component in Fed-OLF Improve Model
Predictive Performance?

Fig. 5 shows the experimental results. The effectiveness of
each component in Fed-OLF is verified by the ablation exper-
iments. The FedAvg method and its aggregation strategy AVG
are compared experimentally. The combination of NO and LEW
indicates that only the LEW parameter aggregation strategy is
used in the FL framework. The combination of TabDiT and AVG
indicates that TabDiT is added to the FL framework and the AVG
strategy is adopted.

By observation of experimental results on all datasets, we
can find that on camel-1.4, camel-1.6, ivy-1.2, jedit-4.2, poi-2.0,
xerces-1.3, CM1, MC1, PC1, PC3, and PC4 datasets, the values
of F1-score and G-mean of FedAvg method are 0, and the values
of AUC are 0.5, when the local imbalance problem of the client
and global imbalance problem is not processed. It indicates
that the model cannot identify defect samples, and the trained
classification model tends to favor nondefect samples, and all
samples are predicted to be nondefect samples. In this situation,
the model tends to make random prediction. We analyze that
on 16 different datasets, our Fed-OLF achieved higher model
performance than methods with only one component, TabDiT

or LEW. Therefore, the ablation results of all datasets show
that each component of Fed-OLF is effective in improving the
prediction performance of the model.

To sum up, based on the analysis of above-mentioned results,
each component in Fed-OLF can improve model performance
and each component is meaningful. TabDiT proposed in Fed-
OLF solves the local and global imbalanced software defect
data problem and expands the software defect dataset scale at
the same time, which makes the local model can train on the
balanced software defect dataset. In addition, a new parameter
weighted aggregation strategy LEW is proposed to further opti-
mize the effect of parameter aggregation and improve the model
performance in FL. Therefore, it is necessary and beneficial to
combine the two strategies.

VI. DISCUSSION

In this section, we have a full discussion of Fed-OLF, explor-
ing the problems that our approach can solve in cross-enterprise
software defect prediction scenarios. In addition, we discuss the
limitations of Fed-OLF.

For cross-enterprise software defect scenarios, Fed-OLF can
be well applied in such areas where data is deficient and sensitive.
Fed-OLF proposed the TabDiT method on the basis of FL
framework to solve the local imbalance and global imbalance
problems of software defect dataset in enterprises. In addition,
the LEW-based aggregation strategy proposed in Fed-OLF can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON RELIABILITY

alleviate the influence of size imbalance on aggregation. It can
also play a certain privacy protection role for enterprise datasets.
On the one hand, the uploaded model parameters are trained
on the balanced software defect dataset rather than the raw
software defect dataset, and the attacker may not be able to infer
the sensitive information from the raw software defect dataset.
Fed-OLF only needs to upload the local information entropy
value instead of the number of samples in the client dataset
Therefore, Fed-OLF not only involves a small amount of dataset
information transmission, which has a certain protection effect
on model parameters, but also can improve the model predictive
performance on software defect dataset.

There are still some limitations in Fed-OLF. It fails to elim-
inate the size imbalance problem in FL. In software defect
prediction scenario of FL, further research is needed to inves-
tigate the negative impact of differences dataset size among
enterprise on the aggregation stage. In addition, TabDiT can
achieve a balance between data availability and privacy, but
it cannot determine whether the generated data satisfies the
privacy-aware applications in real. Therefore, the privacy issue
of data generated by TabDiT needs to be further studied.

VII. CONCLUSION AND FUTURE WORK

To make full use of sensitive data in the software defect
prediction and to overcome imbalanced software defect data
problem, this study proposes a novel federated oversample
learning framework named Fed-OLF. First, the TabDiT method
proposed in Fed-OLF solves the local imbalance and global
imbalance problems in the datasets of various enterprises and
organizations. Under the premise of satisfying data privacy
and security, TabDiT solves the imbalanced software defect
data distribution of the client by synthesizing software defect
samples. The balanced software defect dataset enables the model
to be fully trained while protecting the privacy of the model
parameters. Second, the weighted aggregation strategy LEW
in Fed-OLF effectively alleviates the negative impact of the
size imbalance on the aggregation effect. This strategy further
optimizes the aggregation effect of client upload parameters in
aggregation stage, thus improving the software defect prediction
performance of the model. In addition, extensive experimental
results show that better model prediction performance can be
achieved in the Fed-OLF framework compared to the baseline
approach. At the same time, the ablation experiments verify
that each component in Fed-OLF is effective. It is important
to note that we provide an FL framework that is not limited
by any prediction model, that is, the framework can support
any more advanced software defect prediction model, and the
client-weighted aggregation strategy is also universal.

In the future, we will further study the size imbalance problem
in FL. The application of FL to other key areas of data privacy
is worth investigating. It is also important to study the model
parameter attack and privacy protection based on FL transmis-
sion to cloud server, which can better protect the private data of
each client.

REFERENCES

[1] Z. M. Zain, S. Sakri, and N. H. A. Ismail, “Application of deep learning
in software defect prediction: Systematic literature review and meta-
analysis,” Inf. Softw. Technol., vol. 158, Jun. 2023, Art. no. 107175.

[2] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, and B. Tekinerdogan, “On
the use of deep learning in software defect prediction,” J. Syst. Softw.,
vol. 195, Jan. 2023, Art. no. 111537.

[3] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham,
“A systematic literature review on software defect prediction using ar-
tificial intelligence: Datasets, data validation methods, approaches, and
tools,” Eng. Appl. Artif. Intell., vol. 111, May 2022, Art. no. 104773.

[4] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba, “The
secret life of software vulnerabilities: A large-scale empirical study,” IEEE
Trans. Softw. Eng., vol. 49, no. 1, pp. 44–63, Jan. 2023.

[5] L. Song and L. L. Minku, “A procedure to continuously evaluate predictive
performance of just-in-time software defect prediction models during soft-
ware development,” IEEE Trans. Softw. Eng., vol. 49, no. 2, pp. 646–666,
Feb. 2023.

[6] M. Aniche, E. Maziero, R. Durelli, and V. H. Durelli, “The effective-
ness of supervised machine learning algorithms in predicting software
refactoring,” IEEE Trans. Softw. Eng., vol. 48, no. 4, pp. 1432–1450,
Apr. 2022.

[7] P. Manchala and M. Bisi, “Diversity based imbalance learning approach
for software fault prediction using machine learning models,” Appl. Soft
Comput., vol. 124, Jul. 2022, Art. no. 109069.

[8] Y. Gao, Y. Zhu, and Y. Zhao, “Dealing with imbalanced data for in-
terpretable defect prediction,” Inf. Softw. Technol., vol. 151, Nov. 2022,
Art. no. 107016.

[9] Y. Ren, B. Liu, and S. Wang, “Joint instance and feature adaptation
for heterogeneous defect prediction,” IEEE Trans. Rel., vol. 73, no. 1,
pp. 741–756, Mar. 2024.

[10] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “Machine learning based
methods for software fault prediction: A survey,” Expert Syst. Appl.,
vol. 172, Jun. 2021, Art. no. 114595.

[11] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for
software engineering,” Assoc. Comput. Machinery Comput. Surv., vol. 54,
no. 10s, pp. 1–73, 2022.

[12] L. Nurgalieva, A. Frik, and G. Doherty, “A narrative review of factors
affecting the implementation of privacy and security practices in software
development,” Assoc. Comput. Machinery Comput. Surv., vol. 55, no. 14s,
pp. 1–27, Dec. 2023.

[13] O. Amaral, S. Abualhaija, D. Torre, M. Sabetzadeh, and L. C. Briand,
“AI-enabled automation for completeness checking of privacy policies,”
IEEE Trans. Softw. Eng., vol. 48, no. 11, pp. 4647–4674, Nov. 2022.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

[15] R. Malhotra and K. Lata, “Handling class imbalance problem in software
maintainability prediction: An empirical investigation,” Front. Comput.
Sci., vol. 16, no. 4, 2022, Art. no. 164205.

[16] Y. Yang et al., “Federated learning for software engineering: A case study
of code clone detection and defect prediction,” IEEE Trans. Softw. Eng.,
vol. 50, no. 2, pp. 296–321, Feb. 2024.

[17] G. Wang, C. X. Dang, and Z. Zhou, “Measure contribution of partici-
pants in federated learning,” in Proc. IEEE Int. Conf. Big Data, 2019,
pp. 2597–2604.

[18] S. K. Lo, Q. Lu, C. Wang, H.-Y. Paik, and L. Zhu, “A systematic litera-
ture review on federated machine learning: From a software engineering
perspective,” Amer. Chem. Soc. Comput. Surv., vol. 54, no. 5, pp. 1–39,
2021.

[19] Z. Chen, C. Yang, M. Zhu, Z. Peng, and Y. Yuan, “Personalized retrogress-
resilient federated learning toward imbalanced medical data,” IEEE Trans.
Med. Imag., vol. 41, no. 12, pp. 3663–3674, Dec. 2022.

[20] W. Zheng, L. Yan, C. Gou, and F.-Y. Wang, “Federated meta-learning for
fraudulent credit card detection,” in Proc. 29th Int. Joint Conf. Artif. Intell.,
2020, pp. 4654–4660.

[21] X. Huang, J. Liu, Y. Lai, B. Mao, and H. Lyu, “EEFED: Personalized
federated learning of execution&evaluation dual network for CPS intrusion
detection,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 41–56, 2023.

[22] P. Tian, Z. Chen, W. Yu, and W. Liao, “Towards asynchronous federated
learning based threat detection: A DC-Adam approach,” Comput. Secur.,
vol. 108, Sep. 2021, Art. no. 102344.

[23] J. Gao et al., “Secure aggregation is insecure: Category inference attack
on federated learning,” IEEE Trans. Dependable Secur. Comput., vol. 20,
no. 1, pp. 147–160, Jan./Feb. 2023.

[24] J. Zhou et al., “A differentially private federated learning model against
poisoning attacks in edge computing,” IEEE Trans. Dependable Secur.
Comput., vol. 20, no. 3, pp. 1941–1958, May/Jun. 2023.

[25] J. Chen, J. Xu, S. Cai, X. Wang, H. Chen, and Z. Li, “Software defect
prediction approach based on a diversity ensemble combined with neural
network,” IEEE Trans. Rel., vol. 73, no. 3, pp. 1487–1501, Sep. 2024.

[26] H. Liu et al., “AudioLDM: Text-to-audio generation with latent diffusion
models,” in Proc. 40th Int. Conf. Mach. Learn., 2023, pp. 21450–21474.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FeD-OLF FOR IMBALANCED SOFTWARE DEFECT PREDICTION UNDER PRIVACY PROTECTION 15

[27] C. Saharia et al., “Photorealistic text-to-image diffusion models with
deep language understanding,” in Proc. Neural Inf. Process. Syst., 2022,
pp. 36479–36494.

[28] A. Blattmann et al., “Align your latents: High-resolution video synthesis
with latent diffusion models,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2023, pp. 22563–22575.

[29] S. Zheng and N. Charoenphakdee, “Diffusion models for missing value
imputation in tabular data,” 2022, arXiv:2210.17128.

[30] M. Hernandez, G. Epelde, A. Alberdi, R. Cilla, and D. Rankin, “Synthetic
data generation for tabular health records: A systematic review,” Neuro-
computing, vol. 493, pp. 28–45, 2022.

[31] S. S. Rathore, S. S. Chouhan, D. K. Jain, and A. G. Vachhani, “Gen-
erative oversampling methods for handling imbalanced data in soft-
ware fault prediction,” IEEE Trans. Rel., vol. 71, no. 2, pp. 747–762,
Jun. 2022.

[32] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Mod-
eling tabular data using conditional GAN,” in Proc. Neural Inf. Process.
Syst., 2019, pp. 7333–7343.

[33] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Neural Inf.
Process. Syst., 2014, pp. 2672–2680.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[35] J. Kim, J. Jeon, J. Lee, J. Hyeong, and N. Park, “OCT-GAN: Neu-
ral ODE-based conditional tabular GANs,” in Proc. Web Conf., 2021,
pp. 1506–1515.

[36] J. Kim et al., “SoS: Score-based oversampling for tabular data,” in Proc.
28th Amer. Chem. Soc. SIGKDD Conf. Knowl. Discov. Data Mining, 2022,
pp. 762–772.

[37] J. Kim, C. Lee, and N. Park, “Stasy: Score-based tabular data synthesis,”
in Proc. 11th Int. Conf. Learn. Representations, 2023, pp. 1–27.

[38] A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko, “TABDDPM:
Modelling tabular data with diffusion models,” in Proc. 40th Int. Conf.
Mach. Learn., 2023, pp. 17564–17579.

[39] C. Lee, J. Kim, and N. Park, “Codi: Co-evolving contrastive diffusion
models for mixed-type tabular synthesis,” in Proc. 40th Int. Conf. Mach.
Learn., 2023, pp. 18940–18956.

[40] N. Wu, L. Yu, X. Jiang, K.-T. Cheng, and Z. Yan, “FedNoRo: Towards
noise-robust federated learning by addressing class imbalance and label
noise heterogeneity,” in Proc. 32nd Int. Joint Conf. Artif. Intell., 2023,
pp. 4424–4432.

[41] J. Zhang et al., “Fed-CBS: A heterogeneity-aware client sampling mecha-
nism for federated learning via class-imbalance reduction,” in Proc. 40th
Int. Conf. Mach. Learn., 2023, pp. 41354–41381.

[42] S. Guo et al., “FedGR: Federated learning with gravitation regulation for
double imbalance distribution,” in Proc. Int. Conf. Database Syst. Adv.
Appl., 2023, pp. 703–718.

[43] S. Jastrzebski et al., “Catastrophic fisher explosion: Early phase fisher
matrix impacts generalization,” in Proc. 38th Int. Conf. Mach. Learn.,
2021, pp. 4772–4784.

[44] G. Yan, H. Wang, and J. Li, “Seizing critical learning periods in federated
learning,” in Proc. AAAI Conf. Artif. Intell., 2022, pp. 8788–8796.

[45] G. Yan, H. Wang, X. Yuan, and J. Li, “DeFL: Defending against model
poisoning attacks in federated learning via critical learning periods aware-
ness,” in Proc. Assoc. Advance. Artif. Intell. Conf. Artif. Intell., 2023,
pp. 10711–10719.

[46] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Neural Inf. Process. Syst., 2020, pp. 6840–6851.

[47] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep
learning models for tabular data,” in Proc. Neural Inf. Process. Syst., 2021,
pp. 18932–18943.

[48] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image
synthesis,” in Proc. Neural Inf. Process. Syst., 2021, pp. 8780–8794.

[49] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic
models,” in Proc. 38th Int. Conf. Mach. Learn., 2021, pp. 8162–8171.

[50] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[51] Y. Yan, Y. Zhu, R. Liu, Y. Zhang, Y. Zhang, and L. Zhang, “Spatial
distribution-based imbalanced undersampling,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 6, pp. 6376–6391, Jun. 2023.

[52] T. Zhu, X. Liu, and E. Zhu, “Oversampling with reliably expanding
minority class regions for imbalanced data learning,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 6, pp. 6167–6181, Jun. 2023.

Xiaowen Hu received the B.E. degree in computer
science and technology, in 2022, from Anhui Nor-
mal University, Wuhu, China, where she is currently
working toward the M.E. degree in computer science
and technology with the School of Computer and
Information.

Her current research interests include software en-
gineering, data mining, and federated learning.

Ming Zheng (Member, IEEE) received the Ph.D. de-
gree in information and communication engineering
from Yunnan University, Kunming, China, in 2020.

He is currently an Associate Professor with the
School of Computer and Information, Anhui Normal
University. His research fields include imbalanced
data mining and software defect prediction.

Rui Zhu (Member, IEEE) received the Ph.D. de-
gree in software engineering from Yunnan University,
Kunming, China, in 2016.

He is currently the Head and an Associate Professor
of Artificial Intelligence with the School of Software,
Yunnan University. His current research interests in-
clude software engineering, intelligent transportation
systems, blockchain, and deep learning.

Xuan Zhang (Member, IEEE) received the Ph.D. de-
gree in system analysis and integration from Yunnan
University, Kunming, China, in 2014.

She is currently a professor of the School of Soft-
ware at Yunnan University. She is the author of four
books and more than 120 articles. She has been
principal investigator for 16 national, provincial, and
private grants and contracts. She is the core scientist
of Yunnan Key Laboratory of Software Engineering
and Yunnan Software Engineering Academic Team.
Her current research interests include software engi-

neering, blockchain, knowledge graphs, and natural language processing.

Zhi Jin (Fellow, IEEE) received the B.S. de-
gree in computer science from Zhejiang University,
Hangzhou, China, in 1984, the M.S. and Ph.D. de-
grees in computer science from the Changsha Institute
of Technology, Changsha, China, in 1987 and 1992,
respectively.

She is currently a Professor of computer science
with Peking University, where she is the Deputy
Director of the Key Laboratory of High Confidence
Software Technologies (Ministry of Education). Her
research interests include software engineering, re-

quirements engineering, knowledge engineering, and machine learning.
Dr. Jin was the recipient of the IEEE TCSVC Distinguished Leadership

Award, the ACM Distinguished Paper Awards (four times), and published
three monographs. She serves as an Associate Editor for IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON RELIABILITY, ACM
TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, Empirical Soft-
ware Engineering, and Requirements Engineering. She is also a Fellow of CCF
and AAIA.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yunnan University. Downloaded on January 17,2025 at 17:42:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

